login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A229870
T(n,k)=Number of n X n 0..k arrays with corresponding row and column sums equal
9
2, 3, 8, 4, 27, 80, 5, 64, 1215, 2432, 6, 125, 8704, 384183, 247552, 7, 216, 40625, 15106048, 923742873, 88060928, 8, 343, 143856, 266515625, 354003288064, 17451302074317, 112371410944, 9, 512, 420175, 2805425280, 36821326171875
OFFSET
1,1
COMMENTS
Table starts
......2.........3............4..............5................6...........7
......8........27...........64............125..............216.........343
.....80......1215.........8704..........40625...........143856......420175
...2432....384183.....15106048......266515625.......2805425280.20610104767
.247552.923742873.354003288064.36821326171875.1656812779036416
LINKS
FORMULA
Empirical for row n:
n=1: a(n) = n + 1
n=2: a(n) = n^3 + 3*n^2 + 3*n + 1
n=3: [polynomial of degree 7]
n=4: [polynomial of degree 13]
EXAMPLE
Some solutions for n=4 k=4
..0..0..0..1....0..0..0..1....0..0..0..0....0..0..1..1....0..0..1..1
..0..1..2..1....0..0..3..4....0..0..3..3....0..1..0..3....0..0..2..2
..1..0..0..3....1..4..2..0....0..4..0..2....1..3..4..0....1..3..4..1
..0..3..2..1....0..3..2..2....0..2..3..2....1..0..3..2....1..1..2..0
CROSSREFS
Row 2 is A000578(n+1)
Row 3 is A168364(n+1)
Sequence in context: A093898 A194931 A195248 * A202651 A334859 A084110
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Oct 01 2013
STATUS
approved