login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A117202
Binomial transform of n*F(n).
3
0, 1, 4, 15, 52, 170, 534, 1631, 4880, 14373, 41810, 120406, 343884, 975325, 2749852, 7713435, 21540304, 59917826, 166094370, 458998523, 1264919720, 3477182961, 9536877614, 26102772910, 71309161752, 194468551225, 529490287924
OFFSET
0,3
COMMENTS
Binomial transform of A045925.
Number of acyclic subgraphs of the wheel graph W_n (on n+1 vertices) with exactly n-1 edges. - Emil R. Vaughan, Jun 12 2007
Equivalently, number of two-component spanning forests of the wheel graph W_n (on n+1 vertices). - Harry Richman, Jul 31 2023
Starting (1, 4, 15, 52, ...) = binomial transform of A136376. - Gary W. Adamson, Sep 03 2008
LINKS
Harry Richman, Farbod Shokrieh, and Chenxi Wu, Counting two-forests and random cut size via potential theory, arXiv:2308.03859 [math.CO], 2023. See p. 18.
J. Salas and A. D. Sokal, Transfer Matrices and Partition-Function Zeros for Antiferromagnetic Potts Models. V. Further Results for the Square-Lattice Chromatic Polynomial, J. Stat. Phys. 135 (2009) 279-373; arXiv:0711.1738 [cond-mat.stat-mech], 2007-2009. Mentions this sequence. - N. J. A. Sloane, Mar 14 2014
FORMULA
G.f.: x*(1-2x+2x^2)/(1-3x+x^2)^2.
a(n) = 6*a(n-1)-11*a(n-2)+6*a(n-3)-a(n-4).
a(n) = Sum_{k=0..n} C(n,k)*k*F(k).
From Benoit Cloitre, Nov 29 2006: (Start)
a(n) = Sum_{k=1..n} F(2k)*B(2n-2k)*binomial(2n,2k) where F=Fibonacci numbers and B=Bernoulli numbers;
a(n) = n*F(2n-1). (End)
a(n) = (2^(-1-n)*(-(-5+sqrt(5))*(3+sqrt(5))^n + (3-sqrt(5))^n*(5+sqrt(5)))*n) / 5. - Colin Barker, Feb 26 2017
a(n) = (1/sqrt(5)) * n * (((1 + sqrt(5)) / 2)^(2*n-1) - ((1 - sqrt(5)) / 2)^(2*n-1)). - Harry Richman, Jul 31 2023
a(n) = round((1/sqrt(5)) * n * phi^(2n-1)), where phi = (1+sqrt(5))/2 is the golden ratio A001622. - Harry Richman, Jul 31 2023
MATHEMATICA
Table[n Fibonacci[2n-1], {n, 0, 26}] (* or *) Table[Sum[Fibonacci[2k]*BernoulliB[2n-2k]*Binomial[2n, 2k], {k, 1, n}], {n, 0, 26}] (* or *) CoefficientList[Series[x(1-2x+2x^2)/(1-3x+x^2)^2 , {x, 0, 26}], x] (* Indranil Ghosh, Feb 26 2017 *)
PROG
(PARI) a(n) = n*fibonacci(2*n-1); \\ Indranil Ghosh, Feb 26 2017
(PARI) concat(0, Vec(x*(1-2*x+2*x^2) / (1-3*x+x^2)^2 + O(x^30))) \\ Colin Barker, Feb 26 2017
CROSSREFS
Cf. A136376.
Cf. A004146 (number of spanning trees of wheel graph).
Sequence in context: A240365 A005492 A003013 * A291011 A137213 A027853
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Mar 02 2006
STATUS
approved