login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Binomial transform of n*F(n).
3

%I #56 Sep 12 2024 07:50:10

%S 0,1,4,15,52,170,534,1631,4880,14373,41810,120406,343884,975325,

%T 2749852,7713435,21540304,59917826,166094370,458998523,1264919720,

%U 3477182961,9536877614,26102772910,71309161752,194468551225,529490287924

%N Binomial transform of n*F(n).

%C Binomial transform of A045925.

%C Number of acyclic subgraphs of the wheel graph W_n (on n+1 vertices) with exactly n-1 edges. - _Emil R. Vaughan_, Jun 12 2007

%C Equivalently, number of two-component spanning forests of the wheel graph W_n (on n+1 vertices). - _Harry Richman_, Jul 31 2023

%C Starting (1, 4, 15, 52, ...) = binomial transform of A136376. - _Gary W. Adamson_, Sep 03 2008

%H Indranil Ghosh, <a href="/A117202/b117202.txt">Table of n, a(n) for n = 0..1000</a>

%H Harry Richman, Farbod Shokrieh, and Chenxi Wu, <a href="https://arxiv.org/abs/2308.03859">Counting two-forests and random cut size via potential theory</a>, arXiv:2308.03859 [math.CO], 2023. See p. 18.

%H J. Salas and A. D. Sokal, <a href="http://arxiv.org/abs/0711.1738">Transfer Matrices and Partition-Function Zeros for Antiferromagnetic Potts Models. V. Further Results for the Square-Lattice Chromatic Polynomial</a>, J. Stat. Phys. 135 (2009) 279-373; arXiv:0711.1738 [cond-mat.stat-mech], 2007-2009. Mentions this sequence. - _N. J. A. Sloane_, Mar 14 2014

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (6,-11,6,-1).

%F G.f.: x*(1-2x+2x^2)/(1-3x+x^2)^2.

%F a(n) = 6*a(n-1)-11*a(n-2)+6*a(n-3)-a(n-4).

%F a(n) = Sum_{k=0..n} C(n,k)*k*F(k).

%F From _Benoit Cloitre_, Nov 29 2006: (Start)

%F a(n) = Sum_{k=1..n} F(2k)*B(2n-2k)*binomial(2n,2k) where F=Fibonacci numbers and B=Bernoulli numbers;

%F a(n) = n*F(2n-1). (End)

%F a(n) = (2^(-1-n)*(-(-5+sqrt(5))*(3+sqrt(5))^n + (3-sqrt(5))^n*(5+sqrt(5)))*n) / 5. - _Colin Barker_, Feb 26 2017

%F a(n) = (1/sqrt(5)) * n * (((1 + sqrt(5)) / 2)^(2*n-1) - ((1 - sqrt(5)) / 2)^(2*n-1)). - _Harry Richman_, Jul 31 2023

%F a(n) = round((1/sqrt(5)) * n * phi^(2n-1)), where phi = (1+sqrt(5))/2 is the golden ratio A001622. - _Harry Richman_, Jul 31 2023

%t Table[n Fibonacci[2n-1],{n,0,26}] (* or *) Table[Sum[Fibonacci[2k]*BernoulliB[2n-2k]*Binomial[2n,2k],{k,1,n}],{n,0,26}] (* or *) CoefficientList[Series[x(1-2x+2x^2)/(1-3x+x^2)^2 ,{x,0,26}],x] (* _Indranil Ghosh_, Feb 26 2017 *)

%o (PARI) a(n) = n*fibonacci(2*n-1); \\ _Indranil Ghosh_, Feb 26 2017

%o (PARI) concat(0, Vec(x*(1-2*x+2*x^2) / (1-3*x+x^2)^2 + O(x^30))) \\ _Colin Barker_, Feb 26 2017

%Y Cf. A001519, A111262.

%Y Cf. A136376.

%Y Cf. A004146 (number of spanning trees of wheel graph).

%K easy,nonn

%O 0,3

%A _Paul Barry_, Mar 02 2006