login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A005492 From expansion of falling factorials.
(Formerly M3495)
2
4, 15, 52, 151, 372, 799, 1540, 2727, 4516, 7087, 10644, 15415, 21652, 29631, 39652, 52039, 67140, 85327, 106996, 132567, 162484, 197215, 237252, 283111, 335332, 394479, 461140, 535927, 619476, 712447, 815524, 929415, 1054852, 1192591 (list; graph; refs; listen; history; text; internal format)
OFFSET

4,1

REFERENCES

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

Table of n, a(n) for n=4..37.

Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992.

Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992

E. G. Whitehead, Jr., Stirling number identities from chromatic polynomials, J. Combin. Theory, A 24 (1978), 314-317.

Index entries for linear recurrences with constant coefficients, signature (5, -10, 10, -5, 1).

FORMULA

a(n) = 5a(n-1) - 10a(n-2) + 10a(n-3) - 5a(n-4) + a(n-5).

a(n) = n^4 - 16n^3 + 102n^2 - 300n + 340.

G.f.: (-7*x^4-x^3-17*x^2+5*x-4)/(x-1)^5. - Harvey P. Dale, Dec 25 2012

MAPLE

A005492:=-(15-23*z+41*z**2-13*z**3+4*z**4)/(z-1)**5; # Conjectured by Simon Plouffe in his 1992 dissertation. Gives sequence except for the leading 4.

MATHEMATICA

LinearRecurrence[{5, -10, 10, -5, 1}, {4, 15, 52, 151, 372}, 50] (* Harvey P. Dale, Dec 25 2012 *)

CROSSREFS

Sequence in context: A303843 A107307 A240365 * A003013 A117202 A291011

Adjacent sequences:  A005489 A005490 A005491 * A005493 A005494 A005495

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane, Simon Plouffe

EXTENSIONS

More terms from Pab Ter (pabrlos(AT)yahoo.com), May 09 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 9 04:06 EDT 2021. Contains 343685 sequences. (Running on oeis4.)