The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A005491 a(n) = n^3 + 3n + 1. (Formerly M3855) 5
 1, 5, 15, 37, 77, 141, 235, 365, 537, 757, 1031, 1365, 1765, 2237, 2787, 3421, 4145, 4965, 5887, 6917, 8061, 9325, 10715, 12237, 13897, 15701, 17655, 19765, 22037, 24477, 27091, 29885, 32865, 36037, 39407, 42981, 46765, 50765, 54987, 59437, 64121, 69045 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 REFERENCES N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS Ivan Panchenko, Table of n, a(n) for n = 0..1000 Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009. Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992 Earl Glen Whitehead Jr., Stirling number identities from chromatic polynomials, J. Combin. Theory, A 24 (1978), 314-317. Index entries for linear recurrences with constant coefficients, signature (4, -6, 4, -1). FORMULA a(0)=1, a(1)=5, a(2)=15, a(3)=37, a(n)=4*a(n-1)-6*a(n-2)+4*a(n-3)-a(n-4). - Harvey P. Dale, Oct 01 2014 MAPLE A005491:=(1+z+z**2+3*z**3)/(z-1)**4; # [Conjectured by Simon Plouffe in his 1992 dissertation.] MATHEMATICA Table[n^3 + 3 n + 1, {n, 0, 50}] (* or *) LinearRecurrence[{4, -6, 4, -1}, {1, 5, 15, 37}, 50] (* Harvey P. Dale, Oct 01 2014 *) PROG (PARI) a(n)=n^3+3*n+1 \\ Charles R Greathouse IV, Oct 07 2015 CROSSREFS Sequence in context: A109818 A146797 A213487 * A348780 A050488 A142964 Adjacent sequences:  A005488 A005489 A005490 * A005492 A005493 A005494 KEYWORD nonn,easy AUTHOR EXTENSIONS More terms from Harvey P. Dale, Oct 01 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 3 19:26 EDT 2022. Contains 355055 sequences. (Running on oeis4.)