login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A005491
a(n) = n^3 + 3*n + 1.
(Formerly M3855)
6
1, 5, 15, 37, 77, 141, 235, 365, 537, 757, 1031, 1365, 1765, 2237, 2787, 3421, 4145, 4965, 5887, 6917, 8061, 9325, 10715, 12237, 13897, 15701, 17655, 19765, 22037, 24477, 27091, 29885, 32865, 36037, 39407, 42981, 46765, 50765, 54987, 59437, 64121, 69045
OFFSET
0,2
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
Earl Glen Whitehead Jr., Stirling number identities from chromatic polynomials, J. Combin. Theory, A 24 (1978), 314-317.
FORMULA
a(0)=1, a(1)=5, a(2)=15, a(3)=37, a(n)=4*a(n-1)-6*a(n-2)+4*a(n-3)-a(n-4). - Harvey P. Dale, Oct 01 2014
From G. C. Greubel, Dec 01 2022: (Start)
E.g.f.: (1 + 4*x + 3*x^2 + x^3)*exp(x).
a(n) = A000578(n) + A016777(n) = A001093(n) + A008585(n). (End)
MAPLE
A005491:=(1+z+z**2+3*z**3)/(z-1)**4; # [Conjectured by Simon Plouffe in his 1992 dissertation.]
MATHEMATICA
Table[n^3 + 3 n + 1, {n, 0, 50}] (* or *) LinearRecurrence[{4, -6, 4, -1}, {1, 5, 15, 37}, 50] (* Harvey P. Dale, Oct 01 2014 *)
PROG
(PARI) a(n)=n^3+3*n+1 \\ Charles R Greathouse IV, Oct 07 2015
(Magma) [n^3+3*n+1: n in [0..50]]; // G. C. Greubel, Dec 01 2022
(SageMath) [(n+1)^3 -3*n^2 for n in range(51)] # G. C. Greubel, Dec 01 2022
CROSSREFS
KEYWORD
nonn,easy
EXTENSIONS
More terms from Harvey P. Dale, Oct 01 2014
STATUS
approved