login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = n^3 + 3*n + 1.
(Formerly M3855)
6

%I M3855 #39 Dec 01 2022 17:46:08

%S 1,5,15,37,77,141,235,365,537,757,1031,1365,1765,2237,2787,3421,4145,

%T 4965,5887,6917,8061,9325,10715,12237,13897,15701,17655,19765,22037,

%U 24477,27091,29885,32865,36037,39407,42981,46765,50765,54987,59437,64121,69045

%N a(n) = n^3 + 3*n + 1.

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H Ivan Panchenko, <a href="/A005491/b005491.txt">Table of n, a(n) for n = 0..1000</a>

%H Simon Plouffe, <a href="https://arxiv.org/abs/0911.4975">Approximations de séries génératrices et quelques conjectures</a>, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.

%H Simon Plouffe, <a href="/A000051/a000051_2.pdf">1031 Generating Functions</a>, Appendix to Thesis, Montreal, 1992

%H Earl Glen Whitehead Jr., <a href="http://dx.doi.org/10.1016/0097-3165(78)90061-4">Stirling number identities from chromatic polynomials</a>, J. Combin. Theory, A 24 (1978), 314-317.

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (4,-6,4,-1).

%F a(0)=1, a(1)=5, a(2)=15, a(3)=37, a(n)=4*a(n-1)-6*a(n-2)+4*a(n-3)-a(n-4). - _Harvey P. Dale_, Oct 01 2014

%F From _G. C. Greubel_, Dec 01 2022: (Start)

%F E.g.f.: (1 + 4*x + 3*x^2 + x^3)*exp(x).

%F a(n) = A000578(n) + A016777(n) = A001093(n) + A008585(n). (End)

%p A005491:=(1+z+z**2+3*z**3)/(z-1)**4; # [Conjectured by _Simon Plouffe_ in his 1992 dissertation.]

%t Table[n^3 + 3 n + 1, {n, 0, 50}] (* or *) LinearRecurrence[{4,-6,4,-1},{1,5,15,37},50] (* _Harvey P. Dale_, Oct 01 2014 *)

%o (PARI) a(n)=n^3+3*n+1 \\ _Charles R Greathouse IV_, Oct 07 2015

%o (Magma) [n^3+3*n+1: n in [0..50]]; // _G. C. Greubel_, Dec 01 2022

%o (SageMath) [(n+1)^3 -3*n^2 for n in range(51)] # _G. C. Greubel_, Dec 01 2022

%Y Cf. A000578, A001093, A008585, A016777, A061989.

%K nonn,easy

%O 0,2

%A _N. J. A. Sloane_, _Simon Plouffe_

%E More terms from _Harvey P. Dale_, Oct 01 2014