login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A050488 a(n) = 3*(2^n-1) - 2*n. 23
0, 1, 5, 15, 37, 83, 177, 367, 749, 1515, 3049, 6119, 12261, 24547, 49121, 98271, 196573, 393179, 786393, 1572823, 3145685, 6291411, 12582865, 25165775, 50331597, 100663243, 201326537, 402653127, 805306309, 1610612675, 3221225409 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Number of words of length n+1 where first element is from {0,1,2}, other elements are from {0,1} and sequence does not decrease (for n=2 there are 3*2^2 sequences, but 000, 100, 110, 111, 200, 210, 211 decrease, so a(2) = 12-7 = 5).

Number of subgroups of C_(2^n) X C_(2^n) (see A060724).

Starting with 1 = row sums of triangle A054582. - Gary W. Adamson, Jun 23 2008

Starting with "1" equals the eigensequence of a triangle with integer squares (1, 4, 9, 16, ...) as the left border and the rest 1's. - Gary W. Adamson, Jul 24 2010

(1 + 2x + 2x^2 + 2x^3 + ...)*(1 + 3x + 7x^2 + 15x^3 + ...) = (1 + 5x + 15x^2 + 37x^3 + ...). - Gary W. Adamson, Mar 14 2012

The partial sums of A033484. - J. M. Bergot, Oct 03 2012

Binomial transform is 0, 1, 7, 33, ... (shifted A066810); inverse binomial transform is 0, 1, 3, 3, ... (3 repeated). - R. J. Mathar, Oct 05 2012

Define a triangle by T(n,0) = n*(n+1) + 1, T(n,n) = n + 1, and T(r,c) = T(r-1,c-1) + T(r-1,c) otherwise; then a(n+1) is the sum of the terms of row n. - J. M. Bergot, Mar 30 2013

Starting with "1" are also the antidiagonal sums of the array formed by partial sums of integer squares (1, 4, 9, 16, ...). - Luciano Ancora, Apr 24 2015

Sums of 2 adjacent terms in diagonal k=2 of Eulerian triangle A008292. I.e., T(n,2)+T(n-1,2) for n > 0. Also, 4th NW-SE diagonal of A126277. In other words, a(n) = A000295(n) + A000295(n+1). - Gregory Gerard Wojnar, Sep 30 2018

LINKS

Reinhard Zumkeller, Table of n, a(n) for n = 0..1000

Tamas Lengyel, On p-adic properties of the Stirling numbers of the first kind, Journal of Number Theory, 148 (2015) 73-94.

Index entries for linear recurrences with constant coefficients, signature (4,-5,2).

FORMULA

Row sums of A125165: (1, 5, 15, 37, ...). Binomial transform of [1, 4, 6, 6, 6, ...] = [1, 5, 15, 37, ...]. 4th diagonal from the right of A126777 = (1, 5, 15, ...). - Gary W. Adamson, Dec 23 2006

a(n) = 2*a(n-1) + (2n-1). - Gary W. Adamson, Sep 30 2007

From Johannes W. Meijer, Feb 20 2009: (Start)

a(n+1) = A156920(n+1,1).

a(n+1) = A156919(n+1,1)/2^n.

a(n+1) = A142963(n+2,1)/2.

a(n) = 4a(n-1) - 5a(n-2) + 2a(n-3) for n>2 with a(0) = 0, a(1) = 1, a(2) = 5.

G.f.: z*(1+z)/((1-z)^2*(1-2*z)).

(End)

a(n) = 2*n + 2*a(n-1) - 1 (with a(0)=0). - Vincenzo Librandi, Aug 06 2010

a(n+1) = Sum_{k=0..n} A000079(k) * A005408(n-k), convolution of the powers of 2 with the odd numbers. - Reinhard Zumkeller, Mar 08 2012

MAPLE

seq(coeff(series(x*(x+1)/((1-x)^2*(1-2*x)), x, n+1), x, n), n = 0 .. 30); # Muniru A Asiru, Oct 26 2018

MATHEMATICA

Table[3(2^n-1)-2n, {n, 0, 30}] (* or *) LinearRecurrence[{4, -5, 2}, {0, 1, 5}, 40] (* Harvey P. Dale, Apr 09 2018 *)

PROG

(Haskell)

a050488 n = sum $ zipWith (*) a000079_list (reverse $ take n a005408_list)

-- Reinhard Zumkeller, Jul 24 2015

(PARI) a(n)=3*(2^n-1)-2*n \\ Charles R Greathouse IV, Sep 24 2015

(MAGMA) [3*(2^n-1) - 2*n: n in [0..30]]; // G. C. Greubel, Oct 23 2018

(GAP) List([0..30], n->3*(2^n-1)-2*n); # Muniru A Asiru, Oct 26 2018

(Python) for n in range(0, 30): print(3*(2**n-1) - 2*n, end=', ') # Stefano Spezia, Oct 27 2018

CROSSREFS

A050487(2^m-1).

Equals (1/2) A051667.

Cf. A000225, A054852, A126277, A125165, A156925, A000079, A005408, A008292, A000295.

Sequence in context: A213487 A005491 A348780 * A142964 A188282 A014316

Adjacent sequences:  A050485 A050486 A050487 * A050489 A050490 A050491

KEYWORD

nonn,easy

AUTHOR

James A. Sellers, Dec 26 1999

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 1 04:32 EST 2021. Contains 349426 sequences. (Running on oeis4.)