The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A156920 Triangle of the normalized A142963 and A156919 sequences. 18
 1, 1, 1, 1, 5, 1, 1, 15, 18, 1, 1, 37, 129, 58, 1, 1, 83, 646, 877, 179, 1, 1, 177, 2685, 8030, 5280, 543, 1, 1, 367, 10002, 56285, 82610, 29658, 1636, 1, 1, 749, 34777, 335162, 919615, 756218, 159742, 4916, 1 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 COMMENTS The originator sequences are A142963 and A156919. The Flower Triangle seems to be an appropriate name for the triangular array of this sequence. The zero patterns of the Flower Polynomials of the first, see A156921, the second, see A156925, the third, see A156927, and the fourth kind, see A156933, look like flowers. The first Maple program generates the Flower Triangle sequence. The second program generates the Right Hand Columns sequences and the third one generates the Left Hand Column sequences. For an explanation of these two algorithms see A142963. LINKS Shi-Mei Ma, Some combinatorial sequences associated with context-free grammars, arXiv:1208.3104v2 [math.CO]. - From N. J. A. Sloane, Aug 21 2012 FORMULA T(n,m) = (m+1)*T(n-1,m) + (2*n-2*m+1)*T(n-1,m-1) with T(n,m=0) = 1 and T(n,n) = 1, n>=0 and 0 <= m <= n. From Peter Bala, Jul 22 2012: (Start) T(n,k) = 1/(2^(n-k))*A156919(n,k). E.g.f.: 1 + t*x + (t+t^2)*x^2/2! + (t+5*t^2+t^3)*x^3/3! + ... = sqrt(E(x,2*t)), where E(x,t) = (1-t)*exp(x*t)/(exp(x*t)-t*exp(x)) = 1 + t*x + (t+t^2)*x^2/2! + (t+4*t^2+t^3)*x^3/3! + ... is the e.g.f. for the Eulerian numbers A008292. The row polynomials R(n,x) satisfy 1/sqrt(1-2*x)*(x*d/dx)^n(1/sqrt(1-2*x)) = R(n,x)/(1-2*x)^(n+1). (End) EXAMPLE The first few rows of the triangle are: [1] [1, 1] [1, 5 , 1 ] [1, 15, 18, 1] [1, 37, 129, 58, 1] [1, 83, 646, 877, 179, 1] MAPLE A156920 := proc(n, m): if n=m then 1; elif m=0 then 1 ; elif m<0 or m>n then 0; else (m+1)*procname(n-1, m)+(2*n-2*m+1)*procname(n-1, m-1) ; end if; end proc: seq(seq(A156920(n, m), m=0..n), n=0..8); RHCnr:=5; RHCmax:=10; RHCend:=RHCnr+RHCmax: for k from RHCnr to RHCend do for n from 0 to k do S2[k, n]:=sum((-1)^(n+i)*binomial(n, i)*i^k/n!, i=0..n) end do: G(k, x):= sum(S2[k, p]*((2*p)!/p!) *x^p/(1-4*x)^(p+1), p=0..k)/(((-1)^(k+1)*2*x)/(-1+4*x)^(k+1)): fx:=simplify(G(k, x)): nmax:=degree(fx); RHC[k-RHCnr+1]:= coeff(fx, x, k-RHCnr)/2^(k-RHCnr) end do: a:=n-> RHC[n]: seq(a(n), n=1..RHCend-RHCnr); LHCnr:=5; LHCmax:=10: LHCend:=LHCnr+LHCmax: for k from LHCnr to LHCend do for n from 0 to k do S2[k, n]:=sum((-1)^(n+i)*binomial(n, i)*i^k/n!, i=0..n) end do: G(k, x):= sum(S2[k, p]*((2*p)!/p!)*x^p/(1-4*x)^(p+1), p=0..k)/ (((-1)^(k+1)*2*x)/(-1+4*x)^(k+1)): fx:=simplify(G(k, x)): nmax:=degree(fx); for n from 0 to nmax do d[n]:= coeff(fx, x, n)/2^n end do: LHC[n]:=d[LHCnr-1] end do: a:=n-> LHC[n]: seq(a(n), n=LHCnr..LHCend-1); MATHEMATICA T[_, 0] = 1; T[n_, n_] = 1; T[n_, m_] := T[n, m] = (m + 1)*T[n - 1, m] + (2*n - 2*m + 1)*T[n - 1, m - 1]; Table[T[n, m], {n, 0, 8}, {m, 0, n}] // Flatten (* Jean-François Alcover, Nov 14 2017 *) CROSSREFS Originator sequences A142963, A156919. Related sequences A156921, A156925, A156927, A156933. Left hand column sequences A050488, A142965, A142966, A142968. Right hand column sequences A000340, A156922, A156923, A156924. Row sums A014307(n+1). Sequence in context: A157147 A232103 A292357 * A174044 A174159 A074060 Adjacent sequences:  A156917 A156918 A156919 * A156921 A156922 A156923 KEYWORD easy,nonn,tabl AUTHOR Johannes W. Meijer, Feb 20 2009 EXTENSIONS Minor edits by Johannes W. Meijer, Sep 28 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 14 18:54 EDT 2021. Contains 343900 sequences. (Running on oeis4.)