login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A066810 Expansion of x^2/((1-3*x)*(1-2*x)^2). 12
0, 0, 1, 7, 33, 131, 473, 1611, 5281, 16867, 52905, 163835, 502769, 1532883, 4651897, 14070379, 42456897, 127894979, 384799049, 1156756443, 3475250065, 10436235955, 31330727961, 94038321227, 282211432673, 846835624611 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

COMMENTS

Binomial transform of A000295.

a(n) = A112626(n, 2). - Ross La Haye, Jan 11 2006

Let Q be a binary relation on the power set P(A) of a set A having n = |A| elements such that for all x,y of P(A), xQy if x is a proper subset of y and |y| - |x| > 1. Then a(n) = |Q|. - Ross La Haye, Jan 11 2008

a(n) is the number of n-digit ternary sequences that have at least two 0's. - Geoffrey Critzer, Apr 14 2009

LINKS

Harry J. Smith, Table of n, a(n) for n = 0..200

Ross La Haye, Binary Relations on the Power Set of an n-Element Set, Journal of Integer Sequences, Vol. 12 (2009), Article 09.2.6.

Index entries for linear recurrences with constant coefficients, signature (7,-16,12).

FORMULA

a(n) = 3^n - 2^n - n*2^(n-1).

From Ross La Haye, Apr 26 2006: (Start)

a(n) = A000244(n) - A001792(n).

a(n) = Sum_{k=2..n} binomial(n,k)2^(n-k). (End)

Inverse binomial transform of A086443. - Ross La Haye, Apr 29 2006

Convolution of A000244 beginning [0,1,3,9,27,81,...] and A001787. - Ross La Haye, Feb 15 2007

From Geoffrey Critzer, Apr 14 2009: (Start)

E.g.f.: exp(2*x)*(exp(x) - x - 1).

a(n) = 3*a(n-1) + (n-1)*2^(n-2). (End)

MAPLE

seq(3^n - 2^n - n*2^(n-1), n=0..30); # G. C. Greubel, Nov 18 2019

MATHEMATICA

RecurrenceTable[{a[n]==3*a[n-1] + (n-1) 2^(n-2), a[0]==0}, a, {n, 0, 30}] (* Geoffrey Critzer, Apr 14 2009 *)

CoefficientList[Series[x^2/((1-3x)(1-2x)^2), {x, 0, 30}], x] (* Vincenzo Librandi, Nov 29 2015 *)

PROG

(PARI) for(n=0, 50, write("b066810.txt", n, " ", 3^n -2^n -n*2^(n-1)) ) \\ Harry J. Smith, Mar 29 2010

(MAGMA) [3^n-2^n-n*2^(n-1): n in [0..30]]; // Vincenzo Librandi, Nov 29 2015

(Sage) [3^n - 2^n - n*2^(n-1) for n in (0..30)] # G. C. Greubel, Nov 18 2019

(GAP) List([0..30], n-> 3^n - 2^n - n*2^(n-1)); # G. C. Greubel, Nov 18 2019

CROSSREFS

Column k=1 of A238858 (with different offset).

Sequence in context: A320907 A258458 A320546 * A262600 A034577 A141291

Adjacent sequences:  A066807 A066808 A066809 * A066811 A066812 A066813

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane, Jan 25 2002

EXTENSIONS

Additional comments from Ross La Haye, Sep 27 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 11 07:47 EST 2019. Contains 329914 sequences. (Running on oeis4.)