login
A377867
Number of subwords of the form DDDD in nondecreasing Dyck paths of length 2n.
1
0, 0, 0, 0, 1, 7, 33, 131, 473, 1608, 5242, 16567, 51123, 154793, 461525, 1358646, 3957088, 11420995, 32707809, 93040751, 263113505, 740238852, 2073098086, 5782387855, 16070206191, 44516728277, 122956408493, 338707969266, 930787894348, 2552224341403, 6984100641117
OFFSET
0,6
COMMENTS
A Dyck path is nondecreasing if the y-coordinates of its valleys form a nondecreasing sequence.
LINKS
E. Barcucci, A. Del Lungo, S. Fezzi, and R. Pinzani, Nondecreasing Dyck paths and q-Fibonacci numbers, Discrete Math., 170 (1997), 211-217.
Éva Czabarka, Rigoberto Flórez, Leandro Junes and José L. Ramírez, Enumerations of peaks and valleys on non-decreasing Dyck paths, Discrete Math., Vol. 341, No. 10 (2018), pp. 2789-2807. See p. 2798.
Rigoberto Flórez, Leandro Junes, and José L. Ramírez, Enumerating several aspects of non-decreasing Dyck paths, Discrete Mathematics, Vol. 342, Issue 11 (2019), 3079-3097. See page 3092.
FORMULA
a(n) = (3*(n-2)*L(2*n-4) - 3*F(2*n+1))/5 + (n+9)*2^(n-4) for n>=3, where F(n) = A000045(n) and L(n) = A000032(n).
G.f.: x^4*(1 - 3*x + 2*x^2 + x^4)/((1 - 2*x)^2*(1 - 3*x + x^2)^2).
MATHEMATICA
Table[If[n < 3, 0, (3*(n-2)*LucasL[2*n-4]-3*Fibonacci[2*n+1])/5+(n+9)*2^(n-4)], {n, 0, 20}]
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Rigoberto Florez, Nov 10 2024
STATUS
approved