login
A377866
Number of subwords of the form DUUD or DDUUD in nondecreasing Dyck paths of length 2n.
0
0, 0, 0, 1, 5, 18, 59, 185, 564, 1685, 4957, 14406, 41455, 118321, 335400, 945193, 2650229, 7398330, 20573219, 57013865, 157517532, 433993661, 1192779085, 3270835566, 8950887895, 24448816993, 66665369424, 181489721425, 493361278949
OFFSET
0,5
COMMENTS
A Dyck path is nondecreasing if the y-coordinates of its valleys form a nondecreasing sequence.
LINKS
E. Barcucci, A. Del Lungo, S. Fezzi, and R. Pinzani, Nondecreasing Dyck paths and q-Fibonacci numbers, Discrete Math., 170 (1997), 211-217.
Éva Czabarka, Rigoberto Flórez, Leandro Junes and José L. Ramírez, Enumerations of peaks and valleys on non-decreasing Dyck paths, Discrete Math., Vol. 341, No. 10 (2018), pp. 2789-2807. See p. 2798.
Rigoberto Flórez, Leandro Junes, and José L. Ramírez, Enumerating several aspects of non-decreasing Dyck paths, Discrete Mathematics, Vol. 342, Issue 11 (2019), 3079-3097. See page 3092.
FORMULA
a(n) = (2*n*L(2*n-5) - 6*F(2*n-6) - F(2*n-7))/5 for n>=3, where F(n)=A000045(n) and L(n)=A000032(n).
G.f.: -x^3*(x^2+x-1)/ (x^2-3*x+1)^2.
E.g.f.: exp(3*x/2)*(5*(35 - 8x)*cosh(sqrt(5)*x/2) - sqrt(5)*(79 - 20*x)*sinh(sqrt(5)*x/2))/25 - 7 - x. - Stefano Spezia, Nov 10 2024
MATHEMATICA
Table[If[n<3, 0, (2*n*LucasL[2*n-5]-6*Fibonacci[2*n-6]-Fibonacci[2*n-7])/5], {n, 0, 20}]
CROSSREFS
KEYWORD
nonn,easy,new
AUTHOR
Rigoberto Florez, Nov 10 2024
STATUS
approved