OFFSET
0,6
COMMENTS
A Dyck path is nondecreasing if the y-coordinates of its valleys form a nondecreasing sequence.
LINKS
E. Barcucci, A. Del Lungo, S. Fezzi, and R. Pinzani, Nondecreasing Dyck paths and q-Fibonacci numbers, Discrete Math., 170 (1997), 211-217.
Éva Czabarka, Rigoberto Flórez, Leandro Junes and José L. Ramírez, Enumerations of peaks and valleys on non-decreasing Dyck paths, Discrete Math., Vol. 341, No. 10 (2018), pp. 2789-2807. See p. 2798.
Rigoberto Flórez, Leandro Junes, and José L. Ramírez, Enumerating several aspects of non-decreasing Dyck paths, Discrete Mathematics, Vol. 342, Issue 11 (2019), 3079-3097. See page 3092.
Index entries for linear recurrences with constant coefficients, signature (6, -11, 6, -1).
FORMULA
a(n) = (2(n-3)*L(2 n-5)-3F(2n-6))/5 for n>=3 and a(n) = 0 for n<=2, F(.) is a Fibonacci number, L(.) is a Lucas number.
G.f.: x^4*(-x^2+x+1)/(x^2-3x+1)^2.
MATHEMATICA
Table[If[n<=2, 0, (2(n-3)LucasL[2n-5]-3Fibonacci[2n-6])/5], {n, 0, 30}]
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Rigoberto Florez, Nov 03 2024
STATUS
approved