login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A269084
Number of n X 3 binary arrays with some element plus some horizontally, vertically or antidiagonally adjacent neighbor totalling two not more than once.
1
7, 30, 114, 428, 1531, 5387, 18590, 63347, 213490, 713237, 2365217, 7794642, 25549763, 83359179, 270860625, 876943006, 2830104798, 9107202178, 29230933367, 93601324315, 299085155918, 953808773503, 3036347307176, 9649992762591
OFFSET
1,1
LINKS
FORMULA
Empirical: a(n) = 2*a(n-1) + 9*a(n-2) - 2*a(n-3) - 33*a(n-4) - 42*a(n-5) - 14*a(n-6) + 10*a(n-7) + 8*a(n-8) - a(n-10).
Empirical g.f.: x*(7 + 16*x - 9*x^2 - 56*x^3 - 60*x^4 - 15*x^5 + 13*x^6 + 8*x^7 - x^8 - x^9) / ((1 + x)^2*(1 - 2*x - 3*x^2 - x^3 + x^4)^2). - Colin Barker, Jan 19 2019
EXAMPLE
Some solutions for n=4:
..0..0..1. .1..0..0. .0..0..1. .1..0..1. .1..0..0. .1..0..1. .0..0..0
..0..0..0. .0..0..0. .0..0..0. .0..0..0. .0..0..0. .0..0..1. .0..1..1
..0..0..0. .0..0..0. .0..0..1. .1..0..1. .0..0..1. .0..0..0. .0..0..0
..0..0..0. .0..0..1. .1..0..1. .0..0..0. .0..0..1. .0..0..1. .0..1..0
CROSSREFS
Column 3 of A269089.
Sequence in context: A368528 A085277 A375995 * A055269 A026631 A037709
KEYWORD
nonn
AUTHOR
R. H. Hardin, Feb 19 2016
STATUS
approved