login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A117199 Expansion of 1/(1-x^2) + x/(1-x^3) + x^2/(1-x^4). 1
1, 1, 2, 0, 2, 0, 2, 1, 1, 0, 3, 0, 1, 1, 2, 0, 2, 0, 2, 1, 1, 0, 3, 0, 1, 1, 2, 0, 2, 0, 2, 1, 1, 0, 3, 0, 1, 1, 2, 0, 2, 0, 2, 1, 1, 0, 3, 0, 1, 1, 2, 0, 2, 0, 2, 1, 1, 0, 3, 0, 1, 1, 2, 0, 2, 0, 2, 1, 1, 0, 3, 0, 1, 1, 2, 0, 2, 0, 2, 1, 1, 0, 3, 0, 1, 1, 2, 0, 2, 0, 2, 1, 1, 0, 3, 0, 1, 1, 2, 0, 2, 0, 2, 1, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Periodic {1,1,2,0,2,0,2,1,1,0,3,0}. Diagonal sums of A117198.

LINKS

Table of n, a(n) for n=0..104.

Index entries for linear recurrences with constant coefficients, signature (-1,-1,0,1,1,1).

FORMULA

G.f.: (1+2x+4x^2+3x^3+3x^4)/(1+x+x^2-x^4-x^5-x^6)

a(n)=(1/792)*{ - 53*[n mod 12] + 211*[(n + 1) mod 12] - 185*[(n + 2) mod 12] + 79*[(n + 3) mod 12] + 13*[(n + 4) mod 12] + 79*[(n + 5) mod 12] - 119*[(n + 6) mod 12] + 145*[(n + 7) mod 12] - 119*[(n + 8) mod 12] + 145*[(n + 9) mod 12] - 53*[(n + 10) mod 12] + 13*[(n + 11) mod 12]}, with n>=0. - Paolo P. Lava, Jun 01 2007

MATHEMATICA

CoefficientList[ Series[1/(1 - x^2) + x/(1 - x^3) + x^2/(1 - x^4), {x, 0, 105}], x] (* Robert G. Wilson v, Mar 14 2006 *)

LinearRecurrence[{-1, -1, 0, 1, 1, 1}, {1, 1, 2, 0, 2, 0}, 120] (* or *) PadRight[ {}, 120, {1, 1, 2, 0, 2, 0, 2, 1, 1, 0, 3, 0}] (* Harvey P. Dale, Dec 22 2013 *)

CROSSREFS

Sequence in context: A156596 A282570 A026613 * A230632 A052511 A054533

Adjacent sequences:  A117196 A117197 A117198 * A117200 A117201 A117202

KEYWORD

easy,nonn

AUTHOR

Paul Barry, Mar 02 2006

EXTENSIONS

More terms from Robert G. Wilson v, Mar 14 2006

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified February 23 02:43 EST 2018. Contains 299473 sequences. (Running on oeis4.)