The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A117199 Expansion of 1/(1-x^2) + x/(1-x^3) + x^2/(1-x^4). 1
 1, 1, 2, 0, 2, 0, 2, 1, 1, 0, 3, 0, 1, 1, 2, 0, 2, 0, 2, 1, 1, 0, 3, 0, 1, 1, 2, 0, 2, 0, 2, 1, 1, 0, 3, 0, 1, 1, 2, 0, 2, 0, 2, 1, 1, 0, 3, 0, 1, 1, 2, 0, 2, 0, 2, 1, 1, 0, 3, 0, 1, 1, 2, 0, 2, 0, 2, 1, 1, 0, 3, 0, 1, 1, 2, 0, 2, 0, 2, 1, 1, 0, 3, 0, 1, 1, 2, 0, 2, 0, 2, 1, 1, 0, 3, 0, 1, 1, 2, 0, 2, 0, 2, 1, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Periodic {1,1,2,0,2,0,2,1,1,0,3,0}. Diagonal sums of A117198. LINKS Index entries for linear recurrences with constant coefficients, signature (-1,-1,0,1,1,1). FORMULA G.f.: (1+2x+4x^2+3x^3+3x^4)/(1+x+x^2-x^4-x^5-x^6) a(n)=(1/792)*{ - 53*[n mod 12] + 211*[(n + 1) mod 12] - 185*[(n + 2) mod 12] + 79*[(n + 3) mod 12] + 13*[(n + 4) mod 12] + 79*[(n + 5) mod 12] - 119*[(n + 6) mod 12] + 145*[(n + 7) mod 12] - 119*[(n + 8) mod 12] + 145*[(n + 9) mod 12] - 53*[(n + 10) mod 12] + 13*[(n + 11) mod 12]}, with n>=0. - Paolo P. Lava, Jun 01 2007 MATHEMATICA CoefficientList[ Series[1/(1 - x^2) + x/(1 - x^3) + x^2/(1 - x^4), {x, 0, 105}], x] (* Robert G. Wilson v, Mar 14 2006 *) LinearRecurrence[{-1, -1, 0, 1, 1, 1}, {1, 1, 2, 0, 2, 0}, 120] (* or *) PadRight[ {}, 120, {1, 1, 2, 0, 2, 0, 2, 1, 1, 0, 3, 0}] (* Harvey P. Dale, Dec 22 2013 *) CROSSREFS Sequence in context: A156596 A282570 A026613 * A230632 A052511 A054533 Adjacent sequences:  A117196 A117197 A117198 * A117200 A117201 A117202 KEYWORD easy,nonn AUTHOR Paul Barry, Mar 02 2006 EXTENSIONS More terms from Robert G. Wilson v, Mar 14 2006 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 26 15:53 EDT 2021. Contains 347668 sequences. (Running on oeis4.)