OFFSET
0,4
COMMENTS
The polynomials alpha_{k}(s) are defined in formula (1.4) in the paper cited below. The coefficients are in ascending order.
LINKS
M. O. Rubinstein, Identities for the Riemann Zeta function., arXiv:0812.2592 [math.NT]
FORMULA
The coefficients of the polynomials alpha_{k}(s)*A053657(k) where alpha_{0}(s) = 1 and alpha_{k+1}(s) = (s-1)/(k+2)-sum(j=1..k,((j-(s-1)*(k-j+1))/(k-j+2))*alpha_{j}(s))/(k+1).
EXAMPLE
alpha_{0}(t) = 1 / 1;
alpha_{1}(t) = (-1 + t) / 2;
alpha_{2}(t) = (-2 - t + 3t^2) / 24;
alpha_{3}(t) = (-2 - t + 2t^2 + t^3) / 48;
MATHEMATICA
alpha[0, _] = 1; alpha[k_, s_] := (s - 1)/(k + 1) - Sum[((j - (s - 1)*(k - j))/(k - j + 1))*alpha[j, s]/(k), {j, 1, k - 1}] // Expand;
a53657[n_] := Product[p^Sum[Floor[(n - 1)/((p - 1) p^k)], {k, 0, n}], {p, Prime[Range[n]]}];
row[k_] := CoefficientList[alpha[k, t]*a53657[k + 1], t];
Table[row[k], {k, 0, 7}] // Flatten (* Jean-François Alcover, Jul 19 2018 *)
CROSSREFS
KEYWORD
AUTHOR
Peter Luschny, Dec 24 2008
EXTENSIONS
More terms from Giovanni Resta, Jul 19 2018
STATUS
approved