The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A238130 Triangle read by rows: T(n,k) is the number of compositions into nonzero parts with k parts directly followed by a different part, n>=0, 0<=k<=n. 11
 1, 1, 0, 2, 0, 0, 2, 2, 0, 0, 3, 4, 1, 0, 0, 2, 10, 4, 0, 0, 0, 4, 12, 14, 2, 0, 0, 0, 2, 22, 29, 10, 1, 0, 0, 0, 4, 26, 56, 36, 6, 0, 0, 0, 0, 3, 34, 100, 86, 31, 2, 0, 0, 0, 0, 4, 44, 148, 200, 99, 16, 1, 0, 0, 0, 0, 2, 54, 230, 374, 278, 78, 8, 0, 0, 0, 0, 0, 6, 58, 322, 680, 654, 274, 52, 2, 0, 0, 0, 0, 0 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS First column (k=0) is A000005, second column (k=1) is 2*A002133. Row sums are A011782. LINKS Joerg Arndt and Alois P. Heinz, Rows n = 0..140, flattened EXAMPLE Triangle starts: 00:  1, 01:  1, 0, 02:  2, 0, 0, 03:  2, 2, 0, 0, 04:  3, 4, 1, 0, 0, 05:  2, 10, 4, 0, 0, 0, 06:  4, 12, 14, 2, 0, 0, 0, 07:  2, 22, 29, 10, 1, 0, 0, 0, 08:  4, 26, 56, 36, 6, 0, 0, 0, 0, 09:  3, 34, 100, 86, 31, 2, 0, 0, 0, 0, 10:  4, 44, 148, 200, 99, 16, 1, 0, 0, 0, 0, 11:  2, 54, 230, 374, 278, 78, 8, 0, 0, 0, 0, 0, 12:  6, 58, 322, 680, 654, 274, 52, 2, 0, 0, 0, 0, 0, 13:  2, 74, 446, 1122, 1390, 814, 225, 22, 1, 0, 0, 0, 0, 0, ... Row 5 is [2, 10, 4, 0, 0, 0] because in the 16 compositions of 5 ##:  [composition]  no. of changes 01:  [ 1 1 1 1 1 ]   0 02:  [ 1 1 1 2 ]   1 03:  [ 1 1 2 1 ]   2 04:  [ 1 1 3 ]   1 05:  [ 1 2 1 1 ]   2 06:  [ 1 2 2 ]   1 07:  [ 1 3 1 ]   2 08:  [ 1 4 ]   1 09:  [ 2 1 1 1 ]   1 10:  [ 2 1 2 ]   2 11:  [ 2 2 1 ]   1 12:  [ 2 3 ]   1 13:  [ 3 1 1 ]   1 14:  [ 3 2 ]   1 15:  [ 4 1 ]   1 16:  [ 5 ]   0 there are 2 with no changes, 10 with one change, and 4 with two changes. MAPLE b:= proc(n, v) option remember; `if`(n=0, 1, expand(       add(b(n-i, i)*`if`(v=0 or v=i, 1, x), i=1..n)))     end: T:= n-> seq(coeff(b(n, 0), x, i), i=0..n): seq(T(n), n=0..14); MATHEMATICA b[n_, v_] := b[n, v] = If[n == 0, 1, Sum[b[n-i, i]*If[v == 0 || v == i, 1, x], {i, 1, n}]]; T[n_] := Table[Coefficient[b[n, 0], x, i], {i, 0, n}]; Table[T[n], {n, 0, 14}] // Flatten (* Jean-François Alcover, Jan 12 2015, translated from Maple *) CROSSREFS Cf. A238279 (same sequence with zeros omitted). Cf. A106356 (compositions with k successive parts same). Cf. A225084 (compositions with maximal up-step k). Sequence in context: A333941 A137676 A333755 * A238707 A181111 A216800 Adjacent sequences:  A238127 A238128 A238129 * A238131 A238132 A238133 KEYWORD nonn,tabl AUTHOR Joerg Arndt and Alois P. Heinz, Feb 21 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 8 12:57 EDT 2021. Contains 343666 sequences. (Running on oeis4.)