OFFSET
0,3
LINKS
Andrew Howroyd, Table of n, a(n) for n = 0..500
EXAMPLE
The a(1) = 1 through a(5) = 14 multiset partitions:
{{1}} {{2}} {{3}} {{4}} {{5}}
{{1,1}} {{1,2}} {{1,3}} {{1,4}}
{{1},{1}} {{1,1,1}} {{2,2}} {{2,3}}
{{1},{2}} {{1,1,2}} {{1,1,3}}
{{1},{1},{1}} {{1},{3}} {{1,2,2}}
{{2},{2}} {{1},{4}}
{{1,1,1,1}} {{2},{3}}
{{1,1},{1,1}} {{1,1,1,2}}
{{1},{1},{2}} {{1,1,1,1,1}}
{{1},{1},{1},{1}} {{1,1},{1,2}}
{{1},{1},{3}}
{{1},{2},{2}}
{{1},{1},{1},{2}}
{{1},{1},{1},{1},{1}}
MATHEMATICA
sps[{}]:={{}}; sps[set:{i_, ___}]:=Join@@Function[s, Prepend[#, s]&/@sps[Complement[set, s]]]/@Cases[Subsets[set], {i, ___}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
Table[Length[Select[Join@@mps/@IntegerPartitions[n], SameQ@@Length/@#&]], {n, 8}]
PROG
(PARI) EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
seq(n)={my(p=1/prod(k=1, n, 1 - x^k*y + O(x*x^n))); concat([1], sum(k=1, n, EulerT(Vec(polcoef(p, k, y), -n))))} \\ Andrew Howroyd, Oct 25 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Gus Wiseman, Oct 10 2018
EXTENSIONS
Terms a(11) and beyond from Andrew Howroyd, Oct 25 2018
STATUS
approved