The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A319066 Number of partitions of integer partitions of n where all parts have the same length. 30
 1, 1, 3, 5, 10, 14, 26, 35, 59, 82, 128, 176, 273, 371, 553, 768, 1119, 1544, 2235, 3084, 4410, 6111, 8649, 11982, 16901, 23383, 32780, 45396, 63365, 87622, 121946, 168407, 233605, 322269, 445723, 613922, 847131, 1164819, 1603431, 2201370, 3023660, 4144124, 5680816 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS Andrew Howroyd, Table of n, a(n) for n = 0..500 EXAMPLE The a(1) = 1 through a(5) = 14 multiset partitions:   {{1}}  {{2}}      {{3}}          {{4}}              {{5}}          {{1,1}}    {{1,2}}        {{1,3}}            {{1,4}}          {{1},{1}}  {{1,1,1}}      {{2,2}}            {{2,3}}                     {{1},{2}}      {{1,1,2}}          {{1,1,3}}                     {{1},{1},{1}}  {{1},{3}}          {{1,2,2}}                                    {{2},{2}}          {{1},{4}}                                    {{1,1,1,1}}        {{2},{3}}                                    {{1,1},{1,1}}      {{1,1,1,2}}                                    {{1},{1},{2}}      {{1,1,1,1,1}}                                    {{1},{1},{1},{1}}  {{1,1},{1,2}}                                                       {{1},{1},{3}}                                                       {{1},{2},{2}}                                                       {{1},{1},{1},{2}}                                                       {{1},{1},{1},{1},{1}} MATHEMATICA sps[{}]:={{}}; sps[set:{i_, ___}]:=Join@@Function[s, Prepend[#, s]&/@sps[Complement[set, s]]]/@Cases[Subsets[set], {i, ___}]; mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]]; Table[Length[Select[Join@@mps/@IntegerPartitions[n], SameQ@@Length/@#&]], {n, 8}] PROG (PARI) EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)} seq(n)={my(p=1/prod(k=1, n, 1 - x^k*y + O(x*x^n))); concat([1], sum(k=1, n, EulerT(Vec(polcoef(p, k, y), -n))))} \\ Andrew Howroyd, Oct 25 2018 CROSSREFS Cf.  A001970, A047968, A261049, A279787, A305551, A306017, A319056. Sequence in context: A229915 A092269 A323429 * A306319 A182722 A089483 Adjacent sequences:  A319063 A319064 A319065 * A319067 A319068 A319069 KEYWORD nonn AUTHOR Gus Wiseman, Oct 10 2018 EXTENSIONS Terms a(11) and beyond from Andrew Howroyd, Oct 25 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 7 16:00 EDT 2021. Contains 343652 sequences. (Running on oeis4.)