OFFSET
0,3
COMMENTS
A pyramid polycube is obtained by gluing together horizontal plateaux (parallelepipeds of height 1) in such a way that (0,0,0) belongs to the first plateau and each cell with coordinates (0,b,c) belongs to the first plateau such that b,c >= 0. If the cell with coordinates (a,b,c) belongs to the (a+1)-st plateau (a>0), then the cell with coordinates (a-1, b, c) belongs to the a-th plateau.
An espalier polycube is a special pyramid such that each plateau contains the cell with coordinates (a,0,0).
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..100
C. Carré, N. Debroux, M. Deneufchatel, J.-P. Dubernard et al., Dirichlet convolution and enumeration of pyramid polycubes, 2013.
C. Carre, N. Debroux, M. Deneufchatel, J.-Ph. Dubernard, C. Hillariet, J.-G. Luque, and O. Mallet, Enumeration of Polycubes and Dirichlet Convolutions, J. Int. Seq. 18 (2015) 15.11.4.
FORMULA
The generating function for the numbers of espaliers of height h and volumes v_1 , ... v_h is x_1^{n_1} * ... x_h^{n_h} / ((1-x_1^{n_1}) *(1-x_1^{n_1}*x_2^{n_2}) *... *(1-x_1^{n_1}*x_2^{n_2}*...x_h^{n_h})).
This sequence is obtained with x_1 = ... = x_h = p by summing over n_1>= ... >= n_h>=1 and then over h.
CROSSREFS
KEYWORD
nonn
AUTHOR
Matthieu Deneufchâtel, Oct 03 2013
EXTENSIONS
a(0)=1 prepended by Seiichi Manyama, Aug 20 2020
STATUS
approved