login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A319063 A(n, k) is the k-th number b > 1 such that b^(prime(n+i)-1) == 1 (mod prime(n+i)^2) for each i = 0..5, with k running over the positive integers; square array, read by antidiagonals, downwards. 7
132857, 171793, 2006776, 261593, 3091832, 296449, 618301, 3420818, 9654224, 17134811, 700993, 3524932, 11002557, 23250274, 36763941, 997757, 4108582, 16616568, 26073470, 195603158, 34998229, 1211201, 4349699, 20512643, 26646377, 307849316, 71724464 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,1

LINKS

Table of n, a(n) for n=1..27.

EXAMPLE

The array starts as follows:

    132857,    171793,    261593,    618301,    700993,    997757,   1211201

   2006776,   3091832,   3420818,   3524932,   4108582,   4349699,   4416499

    296449,   9654224,  11002557,  16616568,  20512643,  20950343,  21184318

  17134811,  23250274,  26073470,  26646377,  44247410,  49287925,  49975689

  36763941, 195603158, 307849316, 364769263, 366974980, 395009864, 428594624

  34998229,  71724464, 124024853, 279238292, 709701384, 710808570

MATHEMATICA

rows = 6; t = 5;

T = Table[lst = {}; b = 2;

   While[Length[lst] < rows,

     p = Prime[n + Range[0, t]];

    If[AllTrue[PowerMod[b, (p - 1), p^2], # == 1 &],

     AppendTo[lst, b]]; b++];

   lst, {n, rows}];

T // TableForm (* Print the A(n, k) table *)

Flatten[Table[T[[j, i - j + 1]], {i, 1, rows}, {j, 1, i}]] (* Robert Price, Oct 01 2019 *)

PROG

(PARI) printrow(n, terms) = my(c=0); for(b=2, oo, my(j=0); for(i=0, 5, my(p=prime(n+i)); if(Mod(b, p^2)^(p-1)==1, j++)); if(j==6, print1(b, ", "); c++); if(c==terms, break))

array(rows, cols) = for(x=1, rows, printrow(x, cols); print(""))

array(8, 8) \\ print initial 8 rows and 8 columns of array

CROSSREFS

Cf. A244249, A256236.

Cf. analog for i = 0..t: A319059 (t=1), A319060 (t=2), A319061 (t=3), A319062 (t=4), A319064 (t=6), A319065 (t=7).

Sequence in context: A238233 A242327 A339535 * A015407 A204536 A061732

Adjacent sequences:  A319060 A319061 A319062 * A319064 A319065 A319066

KEYWORD

nonn,tabl

AUTHOR

Felix Fröhlich, Sep 09 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 7 16:00 EDT 2021. Contains 343652 sequences. (Running on oeis4.)