login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A319062 A(n, k) is the k-th number b > 1 such that b^(prime(n+i)-1) == 1 (mod prime(n+i)^2) for each i = 0..4, with k running over the positive integers; square array, read by antidiagonals, downwards. 7
19601, 22049, 54568, 48149, 57968, 13543, 52057, 132857, 101399, 296449, 67357, 171793, 132576, 298117, 3414284, 84457, 223568, 296449, 380827, 4029059, 14380864, 85193, 261593, 338168, 1096112, 7040291, 14461231, 3727271, 93493, 282907, 1098599, 1761679 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,1

LINKS

Table of n, a(n) for n=1..32.

EXAMPLE

The array starts as follows:

     19601,    22049,    48149,    52057,    67357,    84457,    85193

     54568,    57968,   132857,   171793,   223568,   261593,   282907

     13543,   101399,   132576,   296449,   338168,  1098599,  1244324

    296449,   298117,   380827,  1096112,  1761679,  2498247,  2500716

   3414284,  4029059,  7040291, 10858059, 12249190, 17134811, 19603812

  14380864, 14461231, 18366174, 22811283, 26295533, 33674748, 34998229

   3727271, 27936608, 29998045, 31239565, 34998229, 45331852, 56029298

MATHEMATICA

rows = 7; t = 4;

T = Table[lst = {}; b = 2;

   While[Length[lst] < rows,

     p = Prime[n + Range[0, t]];

    If[AllTrue[PowerMod[b, (p - 1), p^2], # == 1 &],

     AppendTo[lst, b]]; b++];

   lst, {n, rows}];

T // TableForm (* Print the A(n, k) table *)

Flatten[Table[T[[j, i - j + 1]], {i, 1, rows}, {j, 1, i}]] (* Robert Price, Sep 30 2019 *)

PROG

(PARI) printrow(n, terms) = my(c=0); for(b=2, oo, my(j=0); for(i=0, 4, my(p=prime(n+i)); if(Mod(b, p^2)^(p-1)==1, j++)); if(j==5, print1(b, ", "); c++); if(c==terms, break))

array(rows, cols) = for(x=1, rows, printrow(x, cols); print(""))

array(8, 10) \\ print initial 8 rows and 10 columns of array

CROSSREFS

Cf. A244249, A256236.

Cf. analog for i = 0..t: A319059 (t=1), A319060 (t=2), A319061 (t=3), A319063 (t=5), A319064 (t=6), A319065 (t=7).

Sequence in context: A093219 A184493 A339534 * A221333 A069369 A156721

Adjacent sequences:  A319059 A319060 A319061 * A319063 A319064 A319065

KEYWORD

nonn,tabl

AUTHOR

Felix Fröhlich, Sep 09 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 9 13:42 EDT 2021. Contains 343742 sequences. (Running on oeis4.)