login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A319062
A(n, k) is the k-th number b > 1 such that b^(prime(n+i)-1) == 1 (mod prime(n+i)^2) for each i = 0..4, with k running over the positive integers; square array, read by antidiagonals, downwards.
7
19601, 22049, 54568, 48149, 57968, 13543, 52057, 132857, 101399, 296449, 67357, 171793, 132576, 298117, 3414284, 84457, 223568, 296449, 380827, 4029059, 14380864, 85193, 261593, 338168, 1096112, 7040291, 14461231, 3727271, 93493, 282907, 1098599, 1761679
OFFSET
1,1
EXAMPLE
The array starts as follows:
19601, 22049, 48149, 52057, 67357, 84457, 85193
54568, 57968, 132857, 171793, 223568, 261593, 282907
13543, 101399, 132576, 296449, 338168, 1098599, 1244324
296449, 298117, 380827, 1096112, 1761679, 2498247, 2500716
3414284, 4029059, 7040291, 10858059, 12249190, 17134811, 19603812
14380864, 14461231, 18366174, 22811283, 26295533, 33674748, 34998229
3727271, 27936608, 29998045, 31239565, 34998229, 45331852, 56029298
MATHEMATICA
rows = 7; t = 4;
T = Table[lst = {}; b = 2;
While[Length[lst] < rows,
p = Prime[n + Range[0, t]];
If[AllTrue[PowerMod[b, (p - 1), p^2], # == 1 &],
AppendTo[lst, b]]; b++];
lst, {n, rows}];
T // TableForm (* Print the A(n, k) table *)
Flatten[Table[T[[j, i - j + 1]], {i, 1, rows}, {j, 1, i}]] (* Robert Price, Sep 30 2019 *)
PROG
(PARI) printrow(n, terms) = my(c=0); for(b=2, oo, my(j=0); for(i=0, 4, my(p=prime(n+i)); if(Mod(b, p^2)^(p-1)==1, j++)); if(j==5, print1(b, ", "); c++); if(c==terms, break))
array(rows, cols) = for(x=1, rows, printrow(x, cols); print(""))
array(8, 10) \\ print initial 8 rows and 10 columns of array
CROSSREFS
Cf. analog for i = 0..t: A319059 (t=1), A319060 (t=2), A319061 (t=3), A319063 (t=5), A319064 (t=6), A319065 (t=7).
Sequence in context: A093219 A184493 A339534 * A344829 A221333 A069369
KEYWORD
nonn,tabl
AUTHOR
Felix Fröhlich, Sep 09 2018
STATUS
approved