login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A319061
A(n, k) is the k-th number b > 1 such that b^(prime(n+i)-1) == 1 (mod prime(n+i)^2) for each i = 0..3, with k running over the positive integers; square array, read by antidiagonals, downwards.
7
557, 901, 1207, 1549, 4607, 1451, 2449, 5176, 2774, 13543, 4049, 10124, 8201, 42269, 24675, 5293, 19601, 13543, 91110, 45124, 39016, 5849, 20924, 24482, 91678, 95236, 302947, 217682, 6193, 22049, 30949, 101399, 188872, 387587, 928423, 165407, 7057, 26018
OFFSET
1,1
EXAMPLE
The array starts as follows:
557, 901, 1549, 2449, 4049, 5293, 5849, 6193
1207, 4607, 5176, 10124, 19601, 20924, 22049, 26018
1451, 2774, 8201, 13543, 24482, 30949, 31457, 40199
13543, 42269, 91110, 91678, 101399, 132576, 142148, 210258
24675, 45124, 95236, 188872, 236915, 273971, 296449, 298117
39016, 302947, 387587, 609436, 637111, 962525, 1015033, 1074751
217682, 928423, 1546225, 1666084, 1756986, 2105290, 2673538, 2733520
165407, 215029, 1008933, 1370816, 1487743, 1493395, 1624207, 2998943
MATHEMATICA
rows = 8; t = 3;
T = Table[lst = {}; b = 2;
While[Length[lst] < rows,
p = Prime[n + Range[0, t]];
If[AllTrue[PowerMod[b, (p-1) p^2], #==1 &], AppendTo[lst, b]]; b++];
lst, {n, rows}];
T // TableForm (* Print the A(n, k) table *)
Flatten[Table[T[[j, i - j + 1]], {i, 1, rows}, {j, 1, i}]] (* Robert Price, Sep 30 2019 *)
PROG
(PARI) printrow(n, terms) = my(c=0); for(b=2, oo, my(j=0); for(i=0, 3, my(p=prime(n+i)); if(Mod(b, p^2)^(p-1)==1, j++)); if(j==4, print1(b, ", "); c++); if(c==terms, break))
array(rows, cols) = for(x=1, rows, printrow(x, cols); print(""))
array(8, 10) \\ print initial 8 rows and 10 columns of array
CROSSREFS
Cf. analog for i = 0..t: A319059 (t=1), A319060 (t=2), A319062 (t=4), A319063 (t=5), A319064 (t=6), A319065 (t=7).
Sequence in context: A371879 A177331 A289564 * A339533 A344828 A260066
KEYWORD
nonn,tabl
AUTHOR
Felix Fröhlich, Sep 09 2018
STATUS
approved