login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A319065
A(n, k) is the k-th number b > 1 such that b^(prime(n+i)-1) == 1 (mod prime(n+i)^2) for each i = 0..7, with k running over the positive integers; square array, read by antidiagonals, downwards.
7
126664001, 133487693, 230695118, 141313157, 633266299, 882345432, 236176001, 1221760151, 1986592318, 12106746963, 242883757, 1575527851, 2715632968, 12709975396, 93732236423, 356977349, 1881738424, 3726163057, 38456038702, 122728381675, 66888229817
OFFSET
1,1
EXAMPLE
The array starts as follows:
126664001, 133487693, 141313157, 236176001, 242883757, 356977349, 358254649
230695118, 633266299, 1221760151, 1575527851, 1881738424, 2118321224
882345432, 1986592318, 2715632968, 3726163057, 5229752849
12106746963, 12709975396, 38456038702, 66479920578
93732236423, 122728381675, 143904477566
66888229817, 79246182226
84391291750
MATHEMATICA
rows = 7; t = 7;
T = Table[lst = {}; b = 2;
While[Length[lst] < rows - n + 1,
fnd = True;
For[i = 0, i <= t, i++,
p = Prime[n + i];
If[PowerMod[b, (p - 1), p^2] != 1 , fnd = False; Break[]]];
If[fnd, AppendTo[lst, b]]; b++];
lst, {n, rows}];
T // TableForm (* Print the A(n, k) table *)
Flatten[Table[T[[j, i - j + 1]], {i, 1, rows}, {j, 1, i}]] (* Robert Price, Oct 07 2019 *)
PROG
(PARI) printrow(n, terms) = my(c=0); for(b=2, oo, my(j=0); for(i=0, 7, my(p=prime(n+i)); if(Mod(b, p^2)^(p-1)==1, j++)); if(j==8, print1(b, ", "); c++); if(c==terms, break))
array(rows, cols) = for(x=1, rows, printrow(x, cols); print(""))
array(3, 3) \\ print initial 3 rows and 3 columns of array
CROSSREFS
Cf. analog for i = 0..t: A319059 (t=1), A319060 (t=2), A319061 (t=3), A319062 (t=4), A319063 (t=5), A319064 (t=6).
Sequence in context: A227274 A162450 A339537 * A344832 A334346 A115301
KEYWORD
nonn,tabl,more
AUTHOR
Felix Fröhlich, Sep 12 2018
EXTENSIONS
a(7)-a(21) from Robert Price, Oct 07 2019
STATUS
approved