login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A227274
Positive solutions of the Pell equation x^2 - 97*y^2 = -1. Solutions x = 5604*a(n).
2
1, 125619267, 15780200115998021, 1982297155904786129853319, 249014713718646783738954504445833, 31281045560536537504251044551093148365259, 3929501983027158158450774377594837056318431034061, 493621154853416034649452413908532772153277417677215453967
OFFSET
0,2
COMMENTS
The Pell equation x^2 - 97*y^2 = -1 has only proper solutions, namely x(n) = 5604*a(n) and y(n) = 569*A227275(n), n >= 0.
REFERENCES
T. Nagell, Introduction to Number Theory, Chelsea Publishing Company, New York, 1964, ch. VI, 57., pp. 201-204.
O. Perron, Die Lehre von den Kettenbruechen, Band I, Teubner, Stuttgart, 1954, Paragraph 27, pp. 92-95.
FORMULA
a(n) = S(n, 2*62809633) + S(n-1, 2*62809633), n >= 0, with the Chebyshev S-polynomials (see A049310) with S(n, -1) = 0. Here 62809633, a prime, is the fundamental x solution of the Pell equation x^2 - 97*y^2 = +1.
a(n) = 2*62809633*a(n-1) - a(n-2), n >= 1, with inputs a(-1) = -1 and a(0) = 1.
O.g.f.: (1 + x)/(1 - 2*62809633*x + x^2).
EXAMPLE
n=0: (5604*1)^2 - 97*(569*1)^2 = -1. Proper fundamental (positive) solution.
n=1: (5604*125619267)^2 - 97*(569*125619265)^2 = -1, where 5604*125619267 = (2^2*3*467)*(3*41873089) = 703970372268 and 569*125619265 = 569*(5*401*62653) = 71477361785.
MATHEMATICA
LinearRecurrence[{125619266, -1}, {1, 125619267}, 8] (* Hugo Pfoertner, Feb 11 2024 *)
CROSSREFS
Cf. A227275 (y/569 solutions), A049310, A227150, A227151.
Sequence in context: A289552 A227275 A227151 * A162450 A339537 A319065
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Jul 05 2013
STATUS
approved