login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Positive solutions of the Pell equation x^2 - 97*y^2 = -1. Solutions x = 5604*a(n).
2

%I #14 Feb 11 2024 11:37:10

%S 1,125619267,15780200115998021,1982297155904786129853319,

%T 249014713718646783738954504445833,

%U 31281045560536537504251044551093148365259,3929501983027158158450774377594837056318431034061,493621154853416034649452413908532772153277417677215453967

%N Positive solutions of the Pell equation x^2 - 97*y^2 = -1. Solutions x = 5604*a(n).

%C The Pell equation x^2 - 97*y^2 = -1 has only proper solutions, namely x(n) = 5604*a(n) and y(n) = 569*A227275(n), n >= 0.

%D T. Nagell, Introduction to Number Theory, Chelsea Publishing Company, New York, 1964, ch. VI, 57., pp. 201-204.

%D O. Perron, Die Lehre von den Kettenbruechen, Band I, Teubner, Stuttgart, 1954, Paragraph 27, pp. 92-95.

%H <a href="/index/Ch#Cheby">Index entries for sequences related to Chebyshev polynomials.</a>

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (125619266,-1).

%F a(n) = S(n, 2*62809633) + S(n-1, 2*62809633), n >= 0, with the Chebyshev S-polynomials (see A049310) with S(n, -1) = 0. Here 62809633, a prime, is the fundamental x solution of the Pell equation x^2 - 97*y^2 = +1.

%F a(n) = 2*62809633*a(n-1) - a(n-2), n >= 1, with inputs a(-1) = -1 and a(0) = 1.

%F O.g.f.: (1 + x)/(1 - 2*62809633*x + x^2).

%e n=0: (5604*1)^2 - 97*(569*1)^2 = -1. Proper fundamental (positive) solution.

%e n=1: (5604*125619267)^2 - 97*(569*125619265)^2 = -1, where 5604*125619267 = (2^2*3*467)*(3*41873089) = 703970372268 and 569*125619265 = 569*(5*401*62653) = 71477361785.

%t LinearRecurrence[{125619266, -1}, {1, 125619267}, 8] (* _Hugo Pfoertner_, Feb 11 2024 *)

%Y Cf. A227275 (y/569 solutions), A049310, A227150, A227151.

%K nonn,easy

%O 0,2

%A _Wolfdieter Lang_, Jul 05 2013