login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A319060
A(n, k) is the k-th number b > 1 such that b^(prime(n+i)-1) == 1 (mod prime(n+i)^2) for each i = 0..2, with k running over the positive integers; square array, read by antidiagonals, downwards.
7
449, 557, 226, 593, 557, 1207, 649, 901, 1451, 606, 701, 1126, 2743, 1371, 3469, 757, 1207, 2774, 1451, 5938, 653, 793, 1243, 3657, 1667, 7624, 2098, 5649, 901, 1324, 4232, 2175, 11980, 4755, 10538, 26645, 1349, 1549, 4607, 2774, 12248, 5845, 11137, 35973
OFFSET
1,1
EXAMPLE
The array starts as follows:
449, 557, 593, 649, 701, 757, 793, 901, 1349, 1457
226, 557, 901, 1126, 1207, 1243, 1324, 1549, 2224, 2449
1207, 1451, 2743, 2774, 3657, 4232, 4607, 5176, 6682, 7251
606, 1371, 1451, 1667, 2175, 2774, 4244, 8201, 13543, 13670
3469, 5938, 7624, 11980, 12248, 13543, 17554, 20809, 23344, 24675
653, 2098, 4755, 5845, 24314, 24675, 25876, 30270, 39016, 40133
5649, 10538, 11137, 18049, 18710, 21426, 23158, 39016, 50902, 55134
26645, 35973, 44710, 49556, 78991, 85972, 89283, 101540, 131466, 157641
7805, 41854, 155349, 165407, 190906, 215029, 235210, 245586, 271376, 296832
6154, 18488, 65788, 104520, 136463, 178863, 263429, 335829, 394854, 399254
MATHEMATICA
rows = 10; t = 2;
T = Table[lst = {}; b = 2;
While[Length[lst] < rows,
p = Prime[n + Range[0, t]];
If[AllTrue[PowerMod[b, (p-1), p^2], # == 1 &], AppendTo[lst, b]]; b++];
lst, {n, rows}];
T // TableForm (* Print the A(n, k) table *)
Flatten[Table[T[[j, i - j + 1]], {i, 1, rows}, {j, 1, i}]] (* Robert Price, Sep 30 2019 *)
PROG
(PARI) printrow(n, terms) = my(c=0); for(b=2, oo, my(j=0); for(i=0, 2, my(p=prime(n+i)); if(Mod(b, p^2)^(p-1)==1, j++)); if(j==3, print1(b, ", "); c++); if(c==terms, break))
array(rows, cols) = for(x=1, rows, printrow(x, cols); print(""))
array(8, 10) \\ print initial 8 rows and 10 columns of array
CROSSREFS
Cf. analog for i = 0..t: A319059 (t=1), A319061 (t=3), A319062 (t=4), A319063 (t=5), A319064 (t=6), A319065 (t=7).
Sequence in context: A107666 A020466 A142420 * A339532 A105376 A325083
KEYWORD
nonn,tabl
AUTHOR
Felix Fröhlich, Sep 09 2018
STATUS
approved