login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A107666
Primes with semiprime digits (digits 4, 6, 9 only).
9
449, 499, 4649, 4969, 4999, 6449, 6469, 6949, 9649, 9949, 44449, 44699, 46499, 46649, 49499, 49669, 49999, 64499, 64969, 66449, 66499, 66949, 69499, 94649, 94949, 94999, 96469, 99469, 444449, 444469, 444649, 446969, 449699, 464699, 464999, 466649, 469649, 469969
OFFSET
1,1
COMMENTS
Intersection of A000040 and A107665. - K. D. Bajpai, Sep 08 2014
LINKS
EXAMPLE
From K. D. Bajpai, Sep 08 2014: (Start)
4649 is a term because it is a prime having only semiprime digits 4, 6 and 9.
6469 is a term because it is a prime having only semiprime digits 4, 6 and 9.
449 is the smallest prime comprising only semiprime digits 4, 6 or 9.
(End)
MAPLE
N:= 4: Dgts:= {4, 6, 9}: A:= NULL:
for d from 1 to N do
K:= combinat[cartprod]([Dgts minus {0}, Dgts $(d-1)]);
while not K[finished] do L:= K[nextvalue](); x:= add(L[i]*10^(d-i), i=1..d);
if isprime(x) then A:= A, x fi od od: A; # K. D. Bajpai, Sep 08 2014
MATHEMATICA
Select[Prime[Range[50000]], Intersection[IntegerDigits[#], {0, 1, 2, 3, 5, 7, 8}] == {} &] (* K. D. Bajpai, Sep 08 2014 *)
CROSSREFS
Cf. A107665 (numbers with semiprime digits), A001358 (semiprimes), A051416 (primes whose digits are all composite), A020466 (primes with digits 4 and 9 only), A093402 (primes of form 44...9), A093945 (primes of form 499...).
Sequence in context: A087700 A344827 A345314 * A020466 A142420 A319060
KEYWORD
base,nonn
AUTHOR
Rick L. Shepherd, May 19 2005
EXTENSIONS
a(35)-a(38) from K. D. Bajpai, Sep 08 2014
STATUS
approved