The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A107667 Triangular matrix T, read by rows, that satisfies: T = D + SHIFT_LEFT(T^2) where SHIFT_LEFT shifts each row 1 place to the left and D is the diagonal matrix {1, 2, 3, ...}. 7
 1, 4, 2, 45, 9, 3, 816, 112, 16, 4, 20225, 2200, 225, 25, 5, 632700, 58176, 4860, 396, 36, 6, 23836540, 1920163, 138817, 9408, 637, 49, 7, 1048592640, 75683648, 4886464, 290816, 16576, 960, 64, 8, 52696514169, 3460349970, 203451912, 10948203, 553473 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS FORMULA Matrix diagonalization method: define the triangular matrix P by P(n, k) = ((n+1)^2)^(n-k)/(n-k)! for n >=k >= 0 and the diagonal matrix D by D(n, n) = n+1 for n >= 0; then T is given by T = P^-1*D*P. Rows read in reverse form the initial terms of the g.f.: (n+1) = Sum_{k>=0} T(n, n-k) * x^k * Product_{j=0..k} (1-(n+1-j)*x) = T(n, n)*(1-(n+1)*x) + T(n, n-1)*x*(1-(n+1)*x)*(1-n*x) + T(n, n-2)*x^2*(1-(n+1)*x)*(1-n*x)*(1-(n-1)*x) + ... [Corrected by Petros Hadjicostas, Mar 11 2021] EXAMPLE Reverse of rows form the initial terms of g.f.s below. Row n=0: 1 = 1*(1-x) + 1*x*(1-x) + ... Row n=1: 2 = 2*(1-2*x) + 4*x*(1-2*x)*(1-x) + 12*x^2*(1-2*x)*(1-x) + ... Row n=2: 3 = 3*(1-3*x) + 9*x*(1-3*x)*(1-2*x)            + 45*x^2*(1-3*x)*(1-2*x)*(1-x)            + 216*x^3*(1-3*x)*(1-2*x)*(1-x) + ... Row n=3: 4 = 4*(1-4*x) + 16*x*(1-4*x)*(1-3*x)            + 112*x^2*(1-4*x)*(1-3*x)*(1-2*x)            + 816*x^3*(1-4*x)*(1-3*x)*(1-2*x)*(1-x)            + 5248*x^4*(1-4*x)*(1-3*x)*(1-2*x)*(1-x) + ... Triangle T begins:            1;            4,        2;           45,        9,       3;          816,      112,      16,      4;        20225,     2200,     225,     25,     5;       632700,    58176,    4860,    396,    36,   6;     23836540,  1920163,  138817,   9408,   637,  49,  7;   1048592640, 75683648, 4886464, 290816, 16576, 960, 64, 8;   ... The matrix square T^2 shifts each row right 1 place, dropping the diagonal D and putting A006689 in column 0:           1;          12,        4;         216,       45,       9;        5248,      816,     112,     16;      160675,    20225,    2200,    225,   25;     5931540,   632700,   58176,   4860,  396,  36;   256182290, 23836540, 1920163, 138817, 9408, 637, 49;   ... PROG (PARI) {T(n, k)=local(P=matrix(n+1, n+1, r, c, if(r>=c, (r^2)^(r-c)/(r-c)!)), D=matrix(n+1, n+1, r, c, if(r==c, r))); if(n>=k, (P^-1*D*P)[n+1, k+1])} CROSSREFS Cf. A006689, A107668 (column 0), A107669, A107670 (matrix square). Sequence in context: A264755 A120968 A193894 * A163176 A277306 A201444 Adjacent sequences:  A107664 A107665 A107666 * A107668 A107669 A107670 KEYWORD nonn,tabl AUTHOR Paul D. Hanna, Jun 07 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 28 00:12 EST 2021. Contains 349395 sequences. (Running on oeis4.)