OFFSET
0,2
FORMULA
Matrix diagonalization method: define the triangular matrix P by P(n, k) = ((n+1)^2)^(n-k)/(n-k)! for n >= k >= 0 and the diagonal matrix D by D(n, n) = n+1 for n >= 0; then T is given by T = P^-1*D^2*P.
EXAMPLE
Triangle T(n,k) (with rows n >= 0 and columns k = 0..n) begins:
1;
12, 4;
216, 45, 9;
5248, 816, 112, 16;
160675, 20225, 2200, 225, 25;
5931540, 632700, 58176, 4860, 396, 36;
256182290, 23836540, 1920163, 138817, 9408, 637, 49;
...
PROG
(PARI) {T(n, k)=local(P=matrix(n+1, n+1, r, c, if(r>=c, (r^2)^(r-c)/(r-c)!)), D=matrix(n+1, n+1, r, c, if(r==c, r))); if(n>=k, (P^-1*D^2*P)[n+1, k+1])}
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Paul D. Hanna, Jun 07 2005
STATUS
approved