

A002911


Susceptibility for hexagonal lattice.
(Formerly M4819 N2061)


1



0, 0, 1, 0, 12, 4, 129, 122, 1332, 960, 10919, 11372, 132900, 126396, 1299851, 1349784
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

2,5


COMMENTS

The hexagonal lattice is the familiar 2dimensional lattice in which each point has 6 neighbors. This is sometimes called the triangular lattice.


REFERENCES

C. Domb, Ising model, in Phase Transitions and Critical Phenomena, vol. 3, ed. C. Domb and M. S. Green, Academic Press, 1974; p. 421.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).


LINKS

Table of n, a(n) for n=2..17.
C. Domb, Ising model, Phase Transitions and Critical Phenomena 3 (1974), 257, 380381, 384387, 390391, 412423. (Annotated scanned copy)
J. W. Essam and M. E. Fisher, PadÃ© approximant studies of the lattice gas and Ising ferromagnet below the critical point, J. Chem. Phys., 38 (1963), 802812.
G. Nebe and N. J. A. Sloane, Home page for hexagonal (or triangular) lattice A2
M. F. Sykes and M. E. Fisher, Antiferromagnetic susceptibility of the plane square and honeycomb Ising lattices, Physica, 28 (1962), 919938.


CROSSREFS

Sequence in context: A081987 A327972 A047709 * A038330 A144630 A107670
Adjacent sequences: A002908 A002909 A002910 * A002912 A002913 A002914


KEYWORD

nonn,more,nice


AUTHOR

N. J. A. Sloane, Simon Plouffe


STATUS

approved



