|
|
A327972
|
|
Bitwise XOR of trajectories of rule 30 and rule 150, when both are started from a lone 1 cell: a(n) = A110240(n) XOR A038184(n).
|
|
7
|
|
|
0, 0, 12, 4, 128, 384, 3404, 740, 37056, 127296, 794316, 286532, 8510656, 25560896, 224057484, 42076324, 2446214016, 8430013568, 51732969356, 18062215300, 553213409792, 1655549411840, 14630859361996, 3227756349540, 159219183713088, 546944274202816, 3411332163636556, 1231354981057220, 36554500089286208, 109782277571646400, 962314238681316620
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
LINKS
|
|
|
FORMULA
|
Conjecture: for n > 1, floor(log_2(a(n))) = 2*n - (1,2,1,4,1,2,1,5 according as n == 0..7 (mod 8), respectively). - Alan Michael Gómez Calderón, Mar 02 2023
|
|
PROG
|
(PARI)
\\ Use this one for writing b-files:
A327972write(up_to) = { my(s1=1, s2=1); for(n=0, up_to, write("b327972.txt", n, " ", bitxor(s1, s2)); s1 = A048727(s1); s2 = A269160(s2)); };
(Python)
def A048727(n): return(n^(n<<1)^(n<<2))
def A269160(n): return(n^((n<<1)|(n<<2)))
def genA327972():
'''Yield successive terms of A327972.'''
s1 = 1
s2 = 1
while True:
yield (s1^s2)
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|