login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A327972 Bitwise XOR of trajectories of rule 30 and rule 150, when both are started from a lone 1 cell: a(n) = A110240(n) XOR A038184(n). 7
0, 0, 12, 4, 128, 384, 3404, 740, 37056, 127296, 794316, 286532, 8510656, 25560896, 224057484, 42076324, 2446214016, 8430013568, 51732969356, 18062215300, 553213409792, 1655549411840, 14630859361996, 3227756349540, 159219183713088, 546944274202816, 3411332163636556, 1231354981057220, 36554500089286208, 109782277571646400, 962314238681316620
(list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
LINKS
FORMULA
a(n) = A038184(n) XOR A110240(n).
Conjecture: for n > 1, floor(log_2(a(n))) = 2*n - (1,2,1,4,1,2,1,5 according as n == 0..7 (mod 8), respectively). - Alan Michael Gómez Calderón, Mar 02 2023
PROG
(PARI)
A048727(n) = bitxor(n, bitxor(2*n, 4*n)); \\ From A048727
A038184(n) = if(!n, 1, A048727(A038184(n-1)));
A269160(n) = bitxor(n, bitor(2*n, 4*n)); \\ From A269160.
A110240(n) = if(!n, 1, A269160(A110240(n-1)));
A327972(n) = bitxor(A038184(n), A110240(n));
\\ Use this one for writing b-files:
A327972write(up_to) = { my(s1=1, s2=1); for(n=0, up_to, write("b327972.txt", n, " ", bitxor(s1, s2)); s1 = A048727(s1); s2 = A269160(s2)); };
(Python)
def A048727(n): return(n^(n<<1)^(n<<2))
def A269160(n): return(n^((n<<1)|(n<<2)))
def genA327972():
'''Yield successive terms of A327972.'''
s1 = 1
s2 = 1
while True:
yield (s1^s2)
s1 = A269160(s1)
s2 = A048727(s2)
CROSSREFS
Cf. also A327971, A327973, A327976, A328103, A328104 for other such combinations.
Sequence in context: A092237 A367323 A081987 * A047709 A002911 A038330
KEYWORD
nonn
AUTHOR
Antti Karttunen, Oct 03 2019
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 19 14:26 EDT 2024. Contains 376012 sequences. (Running on oeis4.)