OFFSET
1,2
COMMENTS
LINKS
Klaus Brockhaus, Table of n, a(n) for n=1..1830 (rows 1 - 60)
Wikipedia, Hilbert matrix (gives inverse Hilbert matric explicitly).
EXAMPLE
The first three inverse Hilbert matrices are:
--------------
[ 1 ]
--------------
[4 -6 ]
[-6 12]
--------------
[ 9 -36 30 ]
[-36 192 -180]
[30 -180 180]
--------------
Triangle begins:
1,
12, 4,
180, 12, 9,
2800, 880, 40, 16,
44100, 46900, 4480, 40, 25,
698544, 1615824, 411264, 13104, 84, 36
MAPLE
invH := proc(n, i, j) (-1)^(i+j)*(i+j-1)*binomial(n+i-1, n-j)*binomial(n+j-1, n-i)* (binomial(i+j-2, i-1))^2 ; end: A144630 := proc(n, k) local T, i, j ; T := 0 ; for i from n-k+1 to n do for j from n-k+1 to n do T := T+invH(n, i, j) ; od; od; RETURN(T) ; end: for n from 1 to 10 do for k from 1 to n do printf("%a, ", A144630(n, k)) : od: od: # R. J. Mathar, Jan 21 2009
MATHEMATICA
inverseHilbert[n_, i_, j_] := (-1)^(i+j)*(i+j-1) * Binomial[n+i-1, n-j] * Binomial[n+j-1, n-i] * Binomial[i+j-2, i-1]^2; inverseHilbert[n_, k_] := Table[ inverseHilbert[n, i, j], {i, n-k+1, n}, {j, n-k+1, n}]; t[n_, k_] := Tr[ Flatten[ inverseHilbert[n, k]]]; Flatten[ Table[t[n, k], {n, 1, 8}, {k, 1, n}]] (* Jean-François Alcover, Jul 16 2012 *)
PROG
(MATLAB) invhilb(1), invhilb(2), invhilb(3), etc.
(Magma) &cat[ [ &+[I[i][j]: i, j in [k..n] ]: k in [n..1 by -1] ] where I:=H^-1 where H:=Matrix(Rationals(), n, n, [ < i, j, 1/(i+j-1) >: i, j in [1..n] ] ): n in [1..8] ]; // Klaus Brockhaus, Jan 21 2009
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Daniel McLaury and Ben Golub, Dec 23 2008
EXTENSIONS
More terms from R. J. Mathar and Klaus Brockhaus, Jan 21 2009
STATUS
approved