The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A335949 a(n) = denominator(b_n(x)), where b_n(x) are the polynomials defined in A335947. 2
 1, 1, 12, 4, 240, 48, 1344, 192, 3840, 1280, 33792, 3072, 5591040, 430080, 245760, 49152, 16711680, 983040, 522977280, 27525120, 1211105280, 173015040, 1447034880, 62914560, 22900899840, 4580179968, 1409286144, 469762048, 116769423360, 4026531840, 7689065201664 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS The sequence can also be computed without reference to the Bernoulli polynomials (ultimately thanks to the von Staudt-Clausen theorem) by the method of Kellner and Sondow (2019). Compare the SageMath program. LINKS Bernd C. Kellner and Jonathan Sondow, On Carmichael and polygonal numbers, Bernoulli polynomials, and sums of base-p digits, arXiv:1902.10672 [math.NT], 2019. FORMULA a(n) = min {m | m*([x^k] b(n, x)) is integer for all k = 0..n}. The odd part of a(n) is squarefree (A000265). a(n) and A144845(n) have the same odd prime factors. a(n)/A144845(n) = 4^floor(n/2)/2 for n >= 1. a(n)/rad(a(n)) = A158302(n+1), (rad=A007947). PROG (SageMath) def A335949(n): a = set(prime_divisors(n + 1)) - set([2]) b = ( p for p in prime_range(3, (n + 2) // (2 + n % 2)) if not p.divides(n + 1) and sum((n + 1).digits(base=p)) >= p ) p = list(a.union(set(b))) return 4 ^ (n // 2) * mul(p) print([A335949(n) for n in range(31)]) CROSSREFS Cf. A335947/A335948, A144845, A158302. Sequence in context: A144630 A107670 A157782 * A002679 A282578 A205141 Adjacent sequences: A335946 A335947 A335948 * A335950 A335951 A335952 KEYWORD nonn AUTHOR Peter Luschny, Jul 01 2020 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 24 18:00 EDT 2023. Contains 361510 sequences. (Running on oeis4.)