login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A335949
a(n) = denominator(b_n(x)), where b_n(x) are the polynomials defined in A335947.
2
1, 1, 12, 4, 240, 48, 1344, 192, 3840, 1280, 33792, 3072, 5591040, 430080, 245760, 49152, 16711680, 983040, 522977280, 27525120, 1211105280, 173015040, 1447034880, 62914560, 22900899840, 4580179968, 1409286144, 469762048, 116769423360, 4026531840, 7689065201664
OFFSET
0,3
COMMENTS
The sequence can also be computed without reference to the Bernoulli polynomials (ultimately thanks to the von Staudt-Clausen theorem) by the method of Kellner and Sondow (2019). Compare the SageMath program.
LINKS
Bernd C. Kellner and Jonathan Sondow, On Carmichael and polygonal numbers, Bernoulli polynomials, and sums of base-p digits, arXiv:1902.10672 [math.NT], 2019.
FORMULA
a(n) = min {m | m*([x^k] b(n, x)) is an integer for all k = 0..n}.
The odd part of a(n) is squarefree (A000265).
a(n) and A144845(n) have the same odd prime factors.
a(n)/A144845(n) = 4^floor(n/2)/2 for n >= 1.
a(n)/rad(a(n)) = A158302(n+1), (rad=A007947).
PROG
(SageMath)
def A335949(n):
a = set(prime_divisors(n + 1)) - set([2])
b = (
p
for p in prime_range(3, (n + 2) // (2 + n % 2))
if not p.divides(n + 1) and sum((n + 1).digits(base=p)) >= p
)
p = list(a.union(set(b)))
return 4 ^ (n // 2) * mul(p)
print([A335949(n) for n in range(31)])
CROSSREFS
KEYWORD
nonn,changed
AUTHOR
Peter Luschny, Jul 01 2020
STATUS
approved