login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A335948 T(n, k) = denominator([x^k] b_n(x)), where b_n(x) = Sum_{k=0..n} binomial(n,k)* Bernoulli(k, 1/2)*x^(n-k). Triangle read by rows, for n >= 0 and 0 <= k <= n. 2
1, 1, 1, 12, 1, 1, 1, 4, 1, 1, 240, 1, 2, 1, 1, 1, 48, 1, 6, 1, 1, 1344, 1, 16, 1, 4, 1, 1, 1, 192, 1, 48, 1, 4, 1, 1, 3840, 1, 48, 1, 24, 1, 3, 1, 1, 1, 1280, 1, 16, 1, 40, 1, 1, 1, 1, 33792, 1, 256, 1, 32, 1, 8, 1, 4, 1, 1, 1, 3072, 1, 256, 1, 32, 1, 8, 1, 12, 1, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,4

COMMENTS

See A335947 for formulas and references concerning the polynomials.

LINKS

Table of n, a(n) for n=0..77.

EXAMPLE

First few polynomials are:

b_0(x) = 1;

b_1(x) = x;

b_2(x) = -(1/12) + x^2;

b_3(x) = -(1/4)*x + x^3;

b_4(x) = (7/240) - (1/2)*x^2 + x^4;

b_5(x) = (7/48)*x - (5/6)*x^3 + x^5;

b_6(x) = -(31/1344) + (7/16)*x^2 - (5/4)*x^4 + x^6;

Triangle starts:

1;

1, 1;

12, 1, 1;

1, 4, 1, 1;

240, 1, 2, 1, 1;

1, 48, 1, 6, 1, 1;

1344, 1, 16, 1, 4, 1, 1;

1, 192, 1, 48, 1, 4, 1, 1;

3840, 1, 48, 1, 24, 1, 3, 1, 1;

1, 1280, 1, 16, 1, 40, 1, 1, 1, 1;

33792, 1, 256, 1, 32, 1, 8, 1, 4, 1, 1;

CROSSREFS

Cf. A335947 (numerators), A157780 (column 0), A033469 (column 0 even indices only).

Sequence in context: A306682 A327154 A334731 * A010209 A058306 A010207

Adjacent sequences: A335945 A335946 A335947 * A335949 A335950 A335951

KEYWORD

nonn,frac,tabl

AUTHOR

Peter Luschny, Jul 01 2020

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 27 11:48 EDT 2023. Contains 361570 sequences. (Running on oeis4.)