login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A335948
T(n, k) = denominator([x^k] b_n(x)), where b_n(x) = Sum_{k=0..n} binomial(n,k)* Bernoulli(k, 1/2)*x^(n-k). Triangle read by rows, for n >= 0 and 0 <= k <= n.
2
1, 1, 1, 12, 1, 1, 1, 4, 1, 1, 240, 1, 2, 1, 1, 1, 48, 1, 6, 1, 1, 1344, 1, 16, 1, 4, 1, 1, 1, 192, 1, 48, 1, 4, 1, 1, 3840, 1, 48, 1, 24, 1, 3, 1, 1, 1, 1280, 1, 16, 1, 40, 1, 1, 1, 1, 33792, 1, 256, 1, 32, 1, 8, 1, 4, 1, 1, 1, 3072, 1, 256, 1, 32, 1, 8, 1, 12, 1, 1
OFFSET
0,4
COMMENTS
See A335947 for formulas and references concerning the polynomials.
EXAMPLE
First few polynomials are:
b_0(x) = 1;
b_1(x) = x;
b_2(x) = -(1/12) + x^2;
b_3(x) = -(1/4)*x + x^3;
b_4(x) = (7/240) - (1/2)*x^2 + x^4;
b_5(x) = (7/48)*x - (5/6)*x^3 + x^5;
b_6(x) = -(31/1344) + (7/16)*x^2 - (5/4)*x^4 + x^6;
Triangle starts:
1;
1, 1;
12, 1, 1;
1, 4, 1, 1;
240, 1, 2, 1, 1;
1, 48, 1, 6, 1, 1;
1344, 1, 16, 1, 4, 1, 1;
1, 192, 1, 48, 1, 4, 1, 1;
3840, 1, 48, 1, 24, 1, 3, 1, 1;
1, 1280, 1, 16, 1, 40, 1, 1, 1, 1;
33792, 1, 256, 1, 32, 1, 8, 1, 4, 1, 1;
CROSSREFS
Cf. A335947 (numerators), A157780 (column 0), A033469 (column 0 even indices only).
Sequence in context: A306682 A327154 A334731 * A010209 A058306 A010207
KEYWORD
nonn,frac,tabl
AUTHOR
Peter Luschny, Jul 01 2020
STATUS
approved