login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A033469
Denominator of Bernoulli(2n,1/2).
7
1, 12, 240, 1344, 3840, 33792, 5591040, 49152, 16711680, 104595456, 173015040, 289406976, 22900899840, 201326592, 116769423360, 7689065201664, 1095216660480, 51539607552, 65942866278481920, 824633720832, 7438196161904640, 3971435999526912
OFFSET
0,2
COMMENTS
From the von Staudt-Clausen theorem it follows that a(n) can be computed without using Bernoulli polynomials or the 'denominator'-function (see the Sage implementation). - Peter Luschny, Mar 24 2014
REFERENCES
J. R. Philip, The symmetrical Euler-Maclaurin summation formula, Math. Sci., 6, 1981, pp. 35-41.
FORMULA
a(n) = denominator(2*(2*Pi)^(-2*n)*(2*n)!*Li_{2*n}(-1)). - Peter Luschny, Jun 29 2012
a(n) = A081294(n) * A002445(n) for n > 0. - Paul Curtz, Apr 17 2013
Apparently, denominators of the fractions with e.g.f. (x/2) / sinh(x/2). - Tom Copeland, Sep 17 2016
MAPLE
with(numtheory); seq(denom(bernoulli(2*n, 1/2)), n=0..20);
MATHEMATICA
Table[ BernoulliB[2*n, 1/2] // Denominator, {n, 0, 18}] (* Jean-François Alcover, Apr 15 2013 *)
a[ n_] := If[ n < 0, 0, (2 n)! SeriesCoefficient[ x/2 / Sinh[x/2], {x, 0, 2 n}] // Denominator]; (* Michael Somos, Sep 21 2016 *)
PROG
(PARI) a(n)=denominator(subst(bernpol(2*n, x), x, 1/2)); \\ Joerg Arndt, Apr 17 2013
(Sage)
def A033469(n):
if n == 0: return 1
M = map(lambda i: i+1, divisors(2*n))
return 2^(2*n-1)*mul(filter(lambda s: is_prime(s), M))
[A033469(n) for n in (0..21)] # Peter Luschny, Mar 24 2014
CROSSREFS
Cf. A001896.
Sequence in context: A352700 A012351 A189883 * A012544 A009052 A213449
KEYWORD
nonn
EXTENSIONS
More terms from Joerg Arndt, Apr 17 2013
STATUS
approved