login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A189883
Numbers n such that the square part of n is one greater than the squarefree part of n.
1
12, 240, 1260, 20592, 38220, 65280, 104652, 159600, 233772, 809100, 1047552, 1335180, 1678320, 2083692, 2558400, 3109932, 7308912, 8500140, 9831360, 11313132, 12956400, 18970380, 21376752, 24005100, 26868672, 37008972, 49780080
OFFSET
1,1
COMMENTS
The complementary sequence, squarefree part of n is one greater than the square part of n, is A069187.
LINKS
FORMULA
n such that A008833(n) - A007913(n) = 1.
a(n) = x^2 (x^2-1), where x = A067874(n). - T. D. Noe, Apr 29 2011
EXAMPLE
1260 = 2^2*3^2*5*7, square part: 2^2*3^2 = 36, squarefree part: 5*7 = 35, and 36 = 35+1.
MAPLE
b:= proc() 1 end:
a:= proc(n) option remember; local i, k;
if n>1 then a(n-1) fi;
for k from b(n-1)+1 while 1<>mul(i[2], i=ifactors(k^2-1)[2])
do od; b(n):=k; k^4-k^2
end:
seq(a(n), n=1..50); # Alois P. Heinz, Apr 29 2011
MATHEMATICA
okQ[n_] := Module[{p, e, sfp}, {p, e} = Transpose[FactorInteger[n]]; e = Mod[e, 2]; sfp = Times @@ (p^e); n/sfp - sfp == 1]; Select[Range[10^5], okQ] (* T. D. Noe, Apr 29 2011 *)
PROG
(PARI) for(n=1, 1e3, if(issquarefree(n^2-1), print1(n^4-n^2", "))) \\ Charles R Greathouse IV, Apr 29, 2011
CROSSREFS
Sequence in context: A222702 A352700 A012351 * A033469 A012544 A009052
KEYWORD
nonn
AUTHOR
Antonio Roldán, Apr 29 2011
STATUS
approved