login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers n such that the square part of n is one greater than the squarefree part of n.
1

%I #16 Nov 14 2014 11:12:31

%S 12,240,1260,20592,38220,65280,104652,159600,233772,809100,1047552,

%T 1335180,1678320,2083692,2558400,3109932,7308912,8500140,9831360,

%U 11313132,12956400,18970380,21376752,24005100,26868672,37008972,49780080

%N Numbers n such that the square part of n is one greater than the squarefree part of n.

%C The complementary sequence, squarefree part of n is one greater than the square part of n, is A069187.

%H Alois P. Heinz, <a href="/A189883/b189883.txt">Table of n, a(n) for n = 1..1000</a>

%H Antonio Roldán, <a href="http://hojaynumeros.blogspot.com">hojaynumeros.blogspot.com</a>

%F n such that A008833(n) - A007913(n) = 1.

%F a(n) = x^2 (x^2-1), where x = A067874(n). - _T. D. Noe_, Apr 29 2011

%e 1260 = 2^2*3^2*5*7, square part: 2^2*3^2 = 36, squarefree part: 5*7 = 35, and 36 = 35+1.

%p b:= proc() 1 end:

%p a:= proc(n) option remember; local i, k;

%p if n>1 then a(n-1) fi;

%p for k from b(n-1)+1 while 1<>mul(i[2], i=ifactors(k^2-1)[2])

%p do od; b(n):=k; k^4-k^2

%p end:

%p seq(a(n), n=1..50); # _Alois P. Heinz_, Apr 29 2011

%t okQ[n_] := Module[{p, e, sfp}, {p, e} = Transpose[FactorInteger[n]]; e = Mod[e, 2]; sfp = Times @@ (p^e); n/sfp - sfp == 1]; Select[Range[10^5], okQ] (* _T. D. Noe_, Apr 29 2011 *)

%o (PARI) for(n=1,1e3,if(issquarefree(n^2-1),print1(n^4-n^2", "))) \\ _Charles R Greathouse IV_, Apr 29, 2011

%K nonn

%O 1,1

%A _Antonio Roldán_, Apr 29 2011