login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A213449 Denominators of higher order Bernoulli numbers.
(Formerly N2089)
2
1, 12, 240, 4032, 34560, 101376, 50319360, 6635520, 451215360, 42361159680, 1471492915200, 1758147379200, 417368899584000, 15410543984640, 141874849382400, 28026642660065280, 922166952040857600, 19725496300339200, 2163255728265599385600, 36926129074234982400 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

See Nørlund for precise definition.

The 'higher order Bernoulli numbers' considered here are the values of the 'higher order Bernoulli polynomials' evaluated at x=1 (and not at x=0, which would make things boring as x is a factor of these polynomials for n>0). This can be seen as an argument that the definition of the classical Bernoulli numbers as the values of the classical Bernoulli polynomials at x=1 better fits into the general picture than the often used definition as the values at x=0. - Peter Luschny, Oct 01 2016

REFERENCES

N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

LINKS

Table of n, a(n) for n=0..19.

N. E. Nørlund, Vorlesungen über Differenzenrechnung, Springer, 1924, p. 459.

EXAMPLE

From Peter Luschny, Oct 01 2016: (Start)

The sequence of polynomials starts:

1,

(1/12*(3*x-1))*x,

(1/240*(15*x^3-30*x^2+5*x+2))*x,

(1/4032*(63*x^5-315*x^4+315*x^3+91*x^2-42*x-16))*x,

(1/34560*(135*x^7-1260*x^6+3150*x^5-840*x^4-2345*x^3-540*x^2+404*x+144))*x. (End)

MAPLE

B := proc(v, n) option remember; `if`(v = 0, 1,

simplify(-(n/v)*add((-1)^s*binomial(v, s)*bernoulli(s)*B(v-s, n), s=1..v))) end:

A213449 := n -> denom(B(2*n, k)):

seq(A213449(n), n=0..19); # Peter Luschny, Oct 01 2016

CROSSREFS

Cf. A000367 (numerators of the polynomials evaluated at x=1 at even indices).

Bisection (even indices) of A001898.

Sequence in context: A033469 A012544 A009052 * A012303 A119837 A012538

Adjacent sequences:  A213446 A213447 A213448 * A213450 A213451 A213452

KEYWORD

nonn,frac

AUTHOR

N. J. A. Sloane, Jun 12 2012

EXTENSIONS

Name corrected and more terms added by Peter Luschny, Oct 01 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 19 16:42 EDT 2019. Contains 323395 sequences. (Running on oeis4.)