OFFSET
0,11
COMMENTS
The polynomials form an Appell sequence.
The parity of n equals the parity of b(n, x). The Bernoulli polynomials do not possess this property.
FORMULA
EXAMPLE
First few polynomials are:
b_0(x) = 1;
b_1(x) = x;
b_2(x) = -(1/12) + x^2;
b_3(x) = -(1/4)*x + x^3;
b_4(x) = (7/240) - (1/2)*x^2 + x^4;
b_5(x) = (7/48)*x - (5/6)*x^3 + x^5;
b_6(x) = -(31/1344) + (7/16)*x^2 - (5/4)*x^4 + x^6;
Normalized by A335949:
b_0(x) = 1;
b_1(x) = x;
b_2(x) = (-1 + 12*x^2) / 12;
b_3(x) = (-x + 4*x^3) / 4;
b_4(x) = (7 - 120*x^2 + 240*x^4) / 240;
b_5(x) = (7*x - 40*x^3 + 48*x^5) / 48;
b_6(x) = (-31 + 588*x^2 - 1680*x^4 + 1344*x^6) / 1344;
b_7(x) = (-31*x + 196*x^3 - 336*x^5 + 192*x^7) / 192;
Triangle starts:
[0] 1;
[1] 0, 1;
[2] -1, 0, 1;
[3] 0, -1, 0, 1;
[4] 7, 0, -1, 0, 1;
[5] 0, 7, 0, -5, 0, 1;
[6] -31, 0, 7, 0, -5, 0, 1;
[7] 0, -31, 0, 49, 0, -7, 0, 1;
[8] 127, 0, -31, 0, 49, 0, -7, 0, 1;
[9] 0, 381, 0, -31, 0, 147, 0, -3, 0, 1;
MAPLE
b := (n, x) -> bernoulli(n, x+1/2):
A335947row := n -> seq(numer(coeff(b(n, x), x, k)), k = 0..n):
seq(A335947row(n), n = 0..10);
CROSSREFS
KEYWORD
AUTHOR
Peter Luschny, Jul 01 2020
STATUS
approved