login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A335947 T(n, k) = numerator([x^k] b_n(x)), where b_n(x) = Sum_{k=0..n} binomial(n,k)* Bernoulli(k, 1/2)*x^(n-k). Triangle read by rows, for n >= 0 and 0 <= k <= n. 2
1, 0, 1, -1, 0, 1, 0, -1, 0, 1, 7, 0, -1, 0, 1, 0, 7, 0, -5, 0, 1, -31, 0, 7, 0, -5, 0, 1, 0, -31, 0, 49, 0, -7, 0, 1, 127, 0, -31, 0, 49, 0, -7, 0, 1, 0, 381, 0, -31, 0, 147, 0, -3, 0, 1, -2555, 0, 381, 0, -155, 0, 49, 0, -15, 0, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,11

COMMENTS

The polynomials form an Appell sequence.

The parity of n equals the parity of b(n, x). The Bernoulli polynomials do not possess this property.

LINKS

Table of n, a(n) for n=0..65.

FORMULA

b(n, 1/2) = Bernoulli(n, 1) = A164555(n)/A027642(n).

b(n, -1) = Bernoulli(n, -1/2) = A157781(n)/A157782(n).

b(n, 0) = Bernoulli(n, 1/2) = A157779(n)/A157780(n).

b(n, x) = Bernoulli(n, x + 1/2).

EXAMPLE

First few polynomials are:

b_0(x) = 1;

b_1(x) = x;

b_2(x) = -(1/12) + x^2;

b_3(x) = -(1/4)*x + x^3;

b_4(x) = (7/240) - (1/2)*x^2 + x^4;

b_5(x) = (7/48)*x - (5/6)*x^3 + x^5;

b_6(x) = -(31/1344) + (7/16)*x^2 - (5/4)*x^4 + x^6;

Normalized by A335949:

b_0(x) = 1;

b_1(x) = x;

b_2(x) = (-1 + 12*x^2) / 12;

b_3(x) = (-x + 4*x^3) / 4;

b_4(x) = (7 - 120*x^2 + 240*x^4) / 240;

b_5(x) = (7*x - 40*x^3 + 48*x^5) / 48;

b_6(x) = (-31 + 588*x^2 - 1680*x^4 + 1344*x^6) / 1344;

b_7(x) = (-31*x + 196*x^3 - 336*x^5 + 192*x^7) / 192;

Triangle starts:

[0] 1;

[1] 0,   1;

[2] -1,  0,   1;

[3] 0,   -1,  0,   1;

[4] 7,   0,   -1,  0,   1;

[5] 0,   7,   0,   -5,  0,  1;

[6] -31, 0,   7,   0,   -5, 0,   1;

[7] 0,   -31, 0,   49,  0,  -7,  0,  1;

[8] 127, 0,   -31, 0,   49, 0,   -7, 0,  1;

[9] 0,   381, 0,   -31, 0,  147, 0,  -3, 0, 1;

MAPLE

b := (n, x) -> bernoulli(n, x+1/2):

A335947row := n -> seq(numer(coeff(b(n, x), x, k)), k = 0..n):

seq(A335947row(n), n = 0..10);

CROSSREFS

Cf. A335948 (denominators), A335949 (denominators of the polynomials).

Cf. A157779 (column 0),  A001896 (column 0 at even indices only).

Cf. A164555/A027642, A157781/A157782, A157779/A157780, A196838/A196839.

Sequence in context: A340906 A136115 A061846 * A293530 A199603 A121570

Adjacent sequences:  A335944 A335945 A335946 * A335948 A335949 A335950

KEYWORD

sign,frac,tabl

AUTHOR

Peter Luschny, Jul 01 2020

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 5 23:01 EDT 2022. Contains 357261 sequences. (Running on oeis4.)