Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #21 Jul 06 2020 07:26:12
%S 1,0,1,-1,0,1,0,-1,0,1,7,0,-1,0,1,0,7,0,-5,0,1,-31,0,7,0,-5,0,1,0,-31,
%T 0,49,0,-7,0,1,127,0,-31,0,49,0,-7,0,1,0,381,0,-31,0,147,0,-3,0,1,
%U -2555,0,381,0,-155,0,49,0,-15,0,1
%N T(n, k) = numerator([x^k] b_n(x)), where b_n(x) = Sum_{k=0..n} binomial(n,k)* Bernoulli(k, 1/2)*x^(n-k). Triangle read by rows, for n >= 0 and 0 <= k <= n.
%C The polynomials form an Appell sequence.
%C The parity of n equals the parity of b(n, x). The Bernoulli polynomials do not possess this property.
%F b(n, 1/2) = Bernoulli(n, 1) = A164555(n)/A027642(n).
%F b(n, -1) = Bernoulli(n, -1/2) = A157781(n)/A157782(n).
%F b(n, 0) = Bernoulli(n, 1/2) = A157779(n)/A157780(n).
%F b(n, x) = Bernoulli(n, x + 1/2).
%e First few polynomials are:
%e b_0(x) = 1;
%e b_1(x) = x;
%e b_2(x) = -(1/12) + x^2;
%e b_3(x) = -(1/4)*x + x^3;
%e b_4(x) = (7/240) - (1/2)*x^2 + x^4;
%e b_5(x) = (7/48)*x - (5/6)*x^3 + x^5;
%e b_6(x) = -(31/1344) + (7/16)*x^2 - (5/4)*x^4 + x^6;
%e Normalized by A335949:
%e b_0(x) = 1;
%e b_1(x) = x;
%e b_2(x) = (-1 + 12*x^2) / 12;
%e b_3(x) = (-x + 4*x^3) / 4;
%e b_4(x) = (7 - 120*x^2 + 240*x^4) / 240;
%e b_5(x) = (7*x - 40*x^3 + 48*x^5) / 48;
%e b_6(x) = (-31 + 588*x^2 - 1680*x^4 + 1344*x^6) / 1344;
%e b_7(x) = (-31*x + 196*x^3 - 336*x^5 + 192*x^7) / 192;
%e Triangle starts:
%e [0] 1;
%e [1] 0, 1;
%e [2] -1, 0, 1;
%e [3] 0, -1, 0, 1;
%e [4] 7, 0, -1, 0, 1;
%e [5] 0, 7, 0, -5, 0, 1;
%e [6] -31, 0, 7, 0, -5, 0, 1;
%e [7] 0, -31, 0, 49, 0, -7, 0, 1;
%e [8] 127, 0, -31, 0, 49, 0, -7, 0, 1;
%e [9] 0, 381, 0, -31, 0, 147, 0, -3, 0, 1;
%p b := (n,x) -> bernoulli(n, x+1/2):
%p A335947row := n -> seq(numer(coeff(b(n,x), x, k)), k = 0..n):
%p seq(A335947row(n), n = 0..10);
%Y Cf. A335948 (denominators), A335949 (denominators of the polynomials).
%Y Cf. A157779 (column 0), A001896 (column 0 at even indices only).
%Y Cf. A164555/A027642, A157781/A157782, A157779/A157780, A196838/A196839.
%K sign,frac,tabl
%O 0,11
%A _Peter Luschny_, Jul 01 2020