|
|
A157779
|
|
Numerator of Bernoulli(n, 1/2).
|
|
10
|
|
|
1, 0, -1, 0, 7, 0, -31, 0, 127, 0, -2555, 0, 1414477, 0, -57337, 0, 118518239, 0, -5749691557, 0, 91546277357, 0, -1792042792463, 0, 1982765468311237, 0, -286994504449393, 0, 3187598676787461083, 0, -4625594554880206790555, 0, 16555640865486520478399, 0
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,5
|
|
COMMENTS
|
Included for completeness, normally alternating zeros like this are omitted. A001896 is the official version of this sequence.
The sequence {a(n)/A141459(n)} gives the generalized Bernoulli numbers B[2,1] obtained from the generalized Stirling2 triangle S3[2,1] = A154537. See the formula section. - Wolfdieter Lang, Apr 27 2017
|
|
LINKS
|
|
|
FORMULA
|
Let P(x) = Sum_{n>=0} x^(2*n+1)/(2*n+1)!; then a(n) = numerator( n! [x^n] x/P(x) ). - Peter Luschny, Jul 05 2016
a(n) = numerator(-(1-2^(1-n))*Bernoulli(n)). - Fabián Pereyra, Dec 31 2022
|
|
MATHEMATICA
|
Numerator[BernoulliB[Range[0, 40], 1/2]] (* Harvey P. Dale, May 04 2013 *)
|
|
PROG
|
(Sage)
f = x / sum(x^(n*2+1)/factorial(n*2+1) for n in (0..2*size))
t = taylor(f, x, 0, size)
return [(factorial(n)*s).numerator() for n, s in enumerate(t.list())]
(PARI) a(n) = numerator(subst(bernpol(n, x), x, 1/2)); \\ Altug Alkan, Jul 05 2016
|
|
CROSSREFS
|
|
|
KEYWORD
|
sign,frac
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|