login
A293530
Square array A(n,k), n >= 0, k >= 1, read by antidiagonals, where column k is the expansion of e.g.f. 1/Product_{j > 0, j mod k > 0} exp(x^j).
4
1, 1, 0, 1, -1, 0, 1, -1, 1, 0, 1, -1, -1, -7, 0, 1, -1, -1, 5, 25, 0, 1, -1, -1, -1, -23, -181, 0, 1, -1, -1, -1, 25, -41, 1201, 0, 1, -1, -1, -1, 1, -101, 1111, -10291, 0, 1, -1, -1, -1, 1, 139, -209, -6259, 97777, 0, 1, -1, -1, -1, 1, 19, -569, 251, -16015
OFFSET
0,14
LINKS
FORMULA
E.g.f. of column k: exp((Sum_{j=1..k-1} x^j)/(x^k - 1)).
EXAMPLE
Square array begins:
1, 1, 1, 1, 1, ...
0, -1, -1, -1, -1, ...
0, 1, -1, -1, -1, ...
0, -7, 5, -1, -1, ...
0, 25, -23, 25, 1, ...
0, -181, -41, -101, 139, ...
CROSSREFS
Columns k=1..3 give A000007, A293532, A293533.
Rows n=0 gives A000012.
Main diagonal gives A293116.
Cf. A293525.
Sequence in context: A136115 A061846 A335947 * A199603 A121570 A169681
KEYWORD
sign,tabl
AUTHOR
Seiichi Manyama, Oct 11 2017
STATUS
approved