login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A293525 Square array A(n,k), n >= 0, k >= 1, read by antidiagonals, where column k is the expansion of e.g.f. Product_{j > 0, j mod k > 0} exp(x^j). 2
1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 3, 7, 0, 1, 1, 3, 7, 25, 0, 1, 1, 3, 13, 49, 181, 0, 1, 1, 3, 13, 49, 321, 1201, 0, 1, 1, 3, 13, 73, 381, 2131, 10291, 0, 1, 1, 3, 13, 73, 381, 2971, 19783, 97777, 0, 1, 1, 3, 13, 73, 501, 3331, 26713, 195777, 1013545, 0, 1, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,13

LINKS

Seiichi Manyama, Antidiagonals n = 0..139, flattened

FORMULA

E.g.f. of column k: exp((Sum_{j=1..k-1} x^j)/(1 - x^k)).

EXAMPLE

Square array begins:

1, 1, 1, 1, 1, ...

0, 1, 1, 1, 1, ...

0, 1, 3, 3, 3, ...

0, 7, 7, 13, 13, ...

0, 25, 49, 49, 73, ...

0, 181, 321, 381, 381, ...

MATHEMATICA

kmax = 12; col[k_] := PadRight[(Exp[Sum[x^j, {j, 1, k - 1}]/(1 - x^k)] + O[x]^kmax // CoefficientList[#, x] &), kmax]*Range[0, kmax - 1]!; A = Array[col, kmax]; Table[A[[n - k + 1, k]], {n, 1, kmax}, {k, 1, n}] // Flatten (* Jean-François Alcover, Oct 12 2017, from formula *)

CROSSREFS

Columns k=1..3 give A000007, A088009, A113775.

Rows n=0 gives A000012.

Main diagonal gives A000262.

Cf. A293530.

Sequence in context: A222010 A152590 A261873 * A016617 A299632 A249186

Adjacent sequences: A293522 A293523 A293524 * A293526 A293527 A293528

KEYWORD

nonn,tabl

AUTHOR

Seiichi Manyama, Oct 11 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 9 17:46 EST 2022. Contains 358703 sequences. (Running on oeis4.)