login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A261873
Decimal expansion of H(1/2,1), a constant appearing in the asymptotic variance of the largest component of random mappings on n symbols, expressed as H(1/2,1)*n^2.
4
0, 3, 7, 0, 0, 7, 2, 1, 6, 5, 8, 2, 2, 9, 0, 3, 0, 3, 2, 0, 9, 9, 2, 3, 7, 8, 9, 4, 4, 8, 9, 1, 9, 3, 3, 0, 0, 7, 0, 0, 7, 3, 9, 8, 0, 6, 2, 1, 3, 2, 8, 4, 7, 3, 6, 3, 8, 5, 0, 5, 7, 3, 0, 5, 9, 7, 0, 9, 3, 6, 6, 0, 0, 7, 7, 3, 2, 8, 3, 1, 2, 8, 0, 6, 7, 1, 0, 1, 0, 7, 7, 6, 7, 7, 9, 4, 9, 3, 7, 6, 4, 9, 6, 1, 3, 2
OFFSET
0,2
REFERENCES
Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.4.2 Random Mapping Statistics, p. 289.
FORMULA
H(1/2,1) = (8/3) Integral_{0..infinity} (1-exp(Ei(-x)/2)) x dx - A143297^2, where A143297 is G(1/2,1), using Finch's notation.
EXAMPLE
0.037007216582290303209923789448919330070073980621328473638505730597...
MATHEMATICA
digits = 105; h1 = (8/3)*NIntegrate[(1 - Exp[ExpIntegralEi[-x]/2])*x, {x, 0, Infinity}, WorkingPrecision -> digits + 10]; h2 = 4*NIntegrate[1 - Exp[ExpIntegralEi[-x]/2], {x, 0, Infinity}, WorkingPrecision -> digits + 10]^2 ; Join[{0}, RealDigits[h1 - h2, 10, digits] // First]
CROSSREFS
Cf. A143297.
Sequence in context: A297530 A222010 A152590 * A293525 A016617 A299632
KEYWORD
nonn,cons,easy
AUTHOR
STATUS
approved