login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A261875
Decimal expansion of the coefficient 'gamma' (see formula) appearing in Otter's result concerning the asymptotics of T_n, the number of non-isomorphic rooted trees of order n.
0
2, 6, 8, 1, 1, 2, 8, 1, 4, 7, 2, 6, 7, 1, 1, 2, 2, 3, 8, 5, 7, 7, 3, 2, 8, 7, 8, 3, 7, 0, 3, 9, 3, 7, 0, 9, 3, 5, 4, 1, 7, 5, 3, 4, 7, 2, 0, 1, 1, 6, 1, 6, 6, 3, 5, 2, 7, 4, 9, 7, 0, 2, 5, 8, 8, 6, 4, 0, 2, 8, 4, 0, 3, 6, 5, 1, 6, 5, 3, 4, 5, 0, 6, 7, 2, 3, 9, 2, 0, 8, 5, 5, 8, 7, 7, 5, 9, 9, 1, 1
OFFSET
1,1
REFERENCES
Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.6 Otter's tree enumeration constants, p. 296.
FORMULA
Lim_{n->infinity} T_n*n^(3/2)/alpha^n = (beta/(2 Pi))^(1/3) = (1/(4 Pi alpha))^(1/2)*gamma, where alpha is A051491 and beta is A086308.
gamma = 2^(2/3)*Pi^(1/6)*beta^(1/3)*sqrt(alpha).
EXAMPLE
2.68112814726711223857732878370393709354175347201161663527497...
MATHEMATICA
digits = 100; max = 250; Clear[s, a]; s[n_, k_] := s[n, k] = a[n + 1 - k] + If[n < 2*k, 0, s[n-k, k]]; a[1] = 1; a[n_] := a[n] = Sum[a[k]*s[n-1, k]*k, {k, 1, n-1}]/(n-1); A[x_] := Sum[a[k]*x^k, {k, 0, max}]; APrime[x_] := Sum[k*a[k]*x^(k-1), {k, 0, max}]; eq = Log[c] == 1 + Sum[A[c^-k]/k, {k, 2, max}]; alpha = c /. FindRoot[eq, {c, 3}, WorkingPrecision -> digits+5]; beta = (1+Sum[APrime[alpha^(-k)]/alpha^k, {k, 2, max}])^(3/2)/Sqrt[2*Pi]; gamma = 2^(2/3)*Pi^(1/6)*beta^(1/3) * Sqrt[alpha]; RealDigits[gamma, 10, digits] // First
CROSSREFS
KEYWORD
cons,nonn
AUTHOR
STATUS
approved