Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #7 Sep 05 2015 14:08:56
%S 2,6,8,1,1,2,8,1,4,7,2,6,7,1,1,2,2,3,8,5,7,7,3,2,8,7,8,3,7,0,3,9,3,7,
%T 0,9,3,5,4,1,7,5,3,4,7,2,0,1,1,6,1,6,6,3,5,2,7,4,9,7,0,2,5,8,8,6,4,0,
%U 2,8,4,0,3,6,5,1,6,5,3,4,5,0,6,7,2,3,9,2,0,8,5,5,8,7,7,5,9,9,1,1
%N Decimal expansion of the coefficient 'gamma' (see formula) appearing in Otter's result concerning the asymptotics of T_n, the number of non-isomorphic rooted trees of order n.
%D Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.6 Otter's tree enumeration constants, p. 296.
%F Lim_{n->infinity} T_n*n^(3/2)/alpha^n = (beta/(2 Pi))^(1/3) = (1/(4 Pi alpha))^(1/2)*gamma, where alpha is A051491 and beta is A086308.
%F gamma = 2^(2/3)*Pi^(1/6)*beta^(1/3)*sqrt(alpha).
%e 2.68112814726711223857732878370393709354175347201161663527497...
%t digits = 100; max = 250; Clear[s, a]; s[n_, k_] := s[n, k] = a[n + 1 - k] + If[n < 2*k, 0, s[n-k, k]]; a[1] = 1; a[n_] := a[n] = Sum[a[k]*s[n-1, k]*k, {k, 1, n-1}]/(n-1); A[x_] := Sum[a[k]*x^k, {k, 0, max}]; APrime[x_] := Sum[k*a[k]*x^(k-1), {k, 0, max}]; eq = Log[c] == 1 + Sum[A[c^-k]/k, {k, 2, max}]; alpha = c /. FindRoot[eq, {c, 3}, WorkingPrecision -> digits+5]; beta = (1+Sum[APrime[alpha^(-k)]/alpha^k, {k, 2, max}])^(3/2)/Sqrt[2*Pi]; gamma = 2^(2/3)*Pi^(1/6)*beta^(1/3) * Sqrt[alpha]; RealDigits[gamma, 10, digits] // First
%Y Cf. A000055, A000081, A051491, A086308, A187770.
%K cons,nonn
%O 1,1
%A _Jean-François Alcover_, Sep 04 2015