The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”). Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A261878 Number of distinct fractional parts of the sums 1/j+...+1/k with 1 <= j <= k <= n, where the fractional part of x is given by x - floor(x). 3
 1, 2, 4, 7, 11, 15, 21, 28, 36, 45, 55, 64, 76, 89, 103, 118, 134, 151, 169, 187, 207, 228, 250, 273, 297, 322, 348, 375, 403, 432, 462, 493, 525, 558, 592, 627, 663, 700, 738, 777, 817, 858, 900, 943, 987, 1032, 1078, 1125, 1173, 1222, 1272, 1323, 1375, 1428, 1482, 1537, 1593, 1650, 1708, 1767 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Conjecture: (i) If 1/j+..+1/k and 1/s+...+1/t have the same fractional part with 0 < min{2,k} <= j <= k, 0 < min{2,t} <= s <= t and j <= s, but the ordered pairs (j,k) and (s,t) are different, then we have 1/j+...+1/k = 1+1/s+...+1/t; moreover, either (j,k) = (2,6) and (s,t) = (4,5), or (j,k) = (2,4) and (s,t) = (12,12), or (j,k) = (2,11) and (s,t) =(5,12), or (j,k) = (3,20) and (s,t) = (7,19). (ii) Let a > b >= 0 and m > 0 be integers with gcd(a,b) = 1 < max{a,m}. Then the numbers sum_{i=j,...,k}1/(a*i-b)^m with 1 <= j <= k and (j > 1 if k > a-b = 1) have pairwise distinct fractional parts. Clearly, part (i) of the conjecture implies that a(n) = n*(n-1)/2 - 3 for all n > 20. See also A261993 for a similar conjecture involving primes. LINKS Zhi-Wei Sun, Table of n, a(n) for n = 1..1200 EXAMPLE a(3) = 4 since the four numbers 1/1, 1/2, 1/3, 1/2+1/3 = 5/6 have pairise distinct fractional parts. a(6) = 15 since 1/1 and those 1/j+..+1/k with 1 < j <= k <= 6 and (j,k) not equal to (2,6), have pairwise distinct fractional parts, but 1/2+1/3+1/4+1/5+1/6 = 29/20 and 1/4+1/5 = 9/20 have the same fractional part. MATHEMATICA frac[x_]:=x-Floor[x] H[n_]:=HarmonicNumber[n] S[n_]:=Table[frac[H[n]-H[m-1]], {m, 1, n}] T:=S T[n_]:=Union[T[n-1], S[n]] Do[Print[n, " ", Length[T[n]]], {n, 1, 60}] CROSSREFS Cf. A001008, A002805, A261993. Sequence in context: A094277 A263995 A293239 * A261993 A299251 A238485 Adjacent sequences:  A261875 A261876 A261877 * A261879 A261880 A261881 KEYWORD nonn AUTHOR Zhi-Wei Sun, Sep 09 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 1 16:44 EST 2021. Contains 349430 sequences. (Running on oeis4.)