login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A293239
Number of terms in the fully expanded n-th derivative of x^x.
4
1, 2, 4, 7, 11, 15, 21, 28, 35, 43, 53, 64, 76, 88, 102, 117, 133, 149, 167, 186, 206, 226, 248, 271, 295, 319, 345, 372, 400, 428, 458, 489, 521, 553, 587, 622, 658, 694, 732, 771, 811, 851, 893, 936, 980, 1024, 1070, 1117, 1165, 1213, 1263, 1314, 1366, 1418
OFFSET
0,2
COMMENTS
Conjecture: the 2nd differences are eventually periodic: 1, 1, 1, 0, 2, 1, 0, 1, [2, 1, 1, 0].
LINKS
FORMULA
Conjecture: a(n) ~ n^2/2. - Vaclav Kotesovec, Oct 05 2017
Conjectures from Colin Barker, Oct 05 2017: (Start)
G.f.: (1 + x^2 + x^3 + x^6 - x^8 + x^9 + x^12 - x^13) / ((1 - x)^2*(1 - x^4)).
a(n) = (5 + (-1)^n + (1-i)*(-i)^n + (1+i)*i^n + 2*n + 4*n^2) / 8 for n>7 where i=sqrt(-1).
a(n) = 2*a(n-1) - a(n-2) + a(n-4) - 2*a(n-5) + a(n-6) for n>6.
(End)
EXAMPLE
For n = 3, the 3rd derivative of x^x is x^x + 3*x^x*log(x) + 3*x^x*log^2(x) + x^x*log^3(x) + 3*x^(x-1) + 3*x^(x-1)*log(x) - x^(x-2), so a(3) = 7.
MATHEMATICA
Join[{1}, Length /@ Rest[NestList[Expand[D[#, x]] &, x^x, 53]]]
CROSSREFS
Cf. A281434.
Sequence in context: A077169 A094277 A263995 * A261878 A261993 A299251
KEYWORD
nonn
AUTHOR
STATUS
approved