OFFSET
0,2
COMMENTS
Conjecture: the 2nd differences are eventually periodic: 1, 1, 1, 0, 2, 1, 0, 1, [2, 1, 1, 0].
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 0..500
FORMULA
Conjecture: a(n) ~ n^2/2. - Vaclav Kotesovec, Oct 05 2017
Conjectures from Colin Barker, Oct 05 2017: (Start)
G.f.: (1 + x^2 + x^3 + x^6 - x^8 + x^9 + x^12 - x^13) / ((1 - x)^2*(1 - x^4)).
a(n) = (5 + (-1)^n + (1-i)*(-i)^n + (1+i)*i^n + 2*n + 4*n^2) / 8 for n>7 where i=sqrt(-1).
a(n) = 2*a(n-1) - a(n-2) + a(n-4) - 2*a(n-5) + a(n-6) for n>6.
(End)
EXAMPLE
For n = 3, the 3rd derivative of x^x is x^x + 3*x^x*log(x) + 3*x^x*log^2(x) + x^x*log^3(x) + 3*x^(x-1) + 3*x^(x-1)*log(x) - x^(x-2), so a(3) = 7.
MATHEMATICA
Join[{1}, Length /@ Rest[NestList[Expand[D[#, x]] &, x^x, 53]]]
CROSSREFS
KEYWORD
nonn
AUTHOR
Vladimir Reshetnikov, Oct 03 2017
STATUS
approved