The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A293238 Decimal expansion of the escape probability for a random walk on the 3D bcc lattice. 5
 7, 1, 7, 7, 7, 0, 0, 1, 1, 0, 4, 6, 1, 2, 9, 9, 9, 7, 8, 2, 1, 1, 9, 3, 2, 2, 3, 6, 6, 5, 7, 7, 9, 4, 2, 6, 6, 5, 7, 1, 2, 9, 8, 8, 9, 3, 3, 9, 9, 8, 4, 3, 7, 1, 9, 8, 9, 7, 6, 3, 6, 6, 3, 8, 7, 7, 2, 6, 9, 4, 2, 3, 1, 2, 5, 8, 4, 9, 8, 6, 6, 3, 7, 0, 1, 6, 1 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS The return probability equals unity minus this constant. The expected number of visits to the origin is the inverse of this constant, A091670. LINKS G. C. Greubel, Table of n, a(n) for n = 0..10000 Shunya Ishioka and Masahiro Koiwa, Random walks on diamond and hexagonal close packed lattices, Phil. Mag. A, 37 (1978), 517-533. G. L. Montet, Integral methods in the calculation of correlation factors in diffusion, Phys. Rev. B 7 (1973), 650-662. Index entries for sequences related to b.c.c. lattice Index entries for sequences related to walks FORMULA Pi^2/(4*K(1/sqrt(2))^2), where K is the complete elliptic integral of the first kind. Equals (4*Pi^3)/Gamma(1/4)^4. - G. C. Greubel, Oct 26 2018 EXAMPLE 0.7177700110461299978211932236657794... MATHEMATICA RealDigits[(4*Pi^3)/Gamma[1/4]^4, 10, 100][[1]] (* G. C. Greubel, Oct 26 2018 *) PROG (PARI) default(realprecision, 100); (4*Pi^3)/gamma(1/4)^4 \\ G. C. Greubel, Oct 26 2018 (Magma) SetDefaultRealField(RealField(100)); R:= RealField(); (4*Pi(R)^3)/Gamma(1/4)^4; // G. C. Greubel, Oct 26 2018 CROSSREFS Cf. A091670, A242761, A293237. Sequence in context: A351835 A010772 A199732 * A210708 A210529 A151785 Adjacent sequences: A293235 A293236 A293237 * A293239 A293240 A293241 KEYWORD nonn,cons AUTHOR Andrey Zabolotskiy, Oct 03 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 4 15:45 EDT 2024. Contains 374923 sequences. (Running on oeis4.)