login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A091670 Decimal expansion of Gamma(1/4)^4/(4*Pi^3). 8
1, 3, 9, 3, 2, 0, 3, 9, 2, 9, 6, 8, 5, 6, 7, 6, 8, 5, 9, 1, 8, 4, 2, 4, 6, 2, 6, 0, 3, 2, 5, 3, 6, 8, 2, 4, 2, 6, 5, 7, 4, 8, 1, 2, 1, 7, 5, 1, 5, 6, 1, 7, 8, 7, 8, 9, 7, 4, 2, 8, 1, 6, 3, 1, 8, 8, 0, 3, 2, 4, 0, 1, 2, 5, 7, 5, 0, 3, 6, 6, 3, 0, 6, 7, 8, 6, 4, 7, 3, 2, 9, 8, 5, 7, 8, 0, 9, 5, 5, 5, 9, 9 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
Watson's first triple integral.
This is also the value of F. Morley's series from 1902 Sum_{k=0..n} (risefac(k,1/2)/k!)^3 = hypergeometric([1/2,1/2,1/2],[1,1],1) with the rising factorial risefac(n,x). See A277232, also for the Hardy reference and a MathWorld link. - Wolfdieter Lang, Nov 11 2016
LINKS
A. M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972, p. 256, 6.1.17 , p. 557, 15.1.26.
M. L. Glasser, I. J. Zucker, Extended Watson integrals for the cubic lattices, Proc. Nat. Acad. Sci., Vol. 74, No. 5 (1977), p. 1800-1801.
Tito Piezas III, Watson's triple integrals.
Eric Weisstein's World of Mathematics, Watson's Triple Integrals.
I. J. Zucker, 70+years of the Watson integrals, J. Stat. Phys., Vol. 145, No. 3 (2011), pp. 591-612.
FORMULA
From Joerg Arndt, Nov 27 2010: (Start)
Equals 1/agm(1,sqrt(1/2))^2.
Equals Gamma(1/4)^4 / (4*Pi^3) = Pi / (Gamma(3/4))^4 = hypergeom([1/2,1/2],[1],1/2)^2, see the two Abramowitz - Stegun references. (End)
Equals the square of A175574. Equals A000796/A068465^4. - R. J. Mathar, Jun 17 2016
Equals hypergeom([1/2,1/2,1/2],[1,1],1) - Wolfdieter Lang, Nov 12 2016
Equals Sum_{k>=0) binomial(2*k,k)^3/2^(6*k). - Amiram Eldar, Aug 26 2020
EXAMPLE
1.39320392968567685918424626032536824265748121751561787897...
MAPLE
Pi/GAMMA(3/4)^4 ; evalf(%) ; # R. J. Mathar, Jun 17 2016
MATHEMATICA
RealDigits[ N[ Gamma[1/4]^4/(4*Pi^3), 102]][[1]] (* Jean-François Alcover, Nov 12 2012, after Eric W. Weisstein *)
PROG
(PARI) 1/agm(sqrt(1/2), 1)^2 \\ Charles R Greathouse IV, Mar 03 2016
(Magma) SetDefaultRealField(RealField(100)); R:= RealField(); Gamma(1/4)^4/(4*Pi(R)^3); // G. C. Greubel, Oct 26 2018
CROSSREFS
Cf. A091671, A091672, A277232, A293238 (inverse).
Sequence in context: A336501 A016674 A264918 * A201416 A072560 A290506
KEYWORD
nonn,cons
AUTHOR
Eric W. Weisstein, Jan 27 2004
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 4 20:02 EDT 2023. Contains 363128 sequences. (Running on oeis4.)