login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A201416 Decimal expansion of least x satisfying 7*x^2 = sec(x) and 0 < x < Pi. 3
3, 9, 3, 2, 7, 3, 8, 2, 7, 3, 2, 8, 8, 4, 1, 5, 0, 3, 8, 3, 2, 4, 5, 2, 0, 5, 7, 2, 0, 6, 2, 5, 3, 4, 2, 6, 5, 9, 1, 4, 5, 2, 1, 7, 7, 2, 0, 3, 0, 3, 2, 2, 0, 5, 9, 1, 8, 2, 9, 7, 1, 9, 8, 6, 8, 9, 1, 8, 8, 7, 1, 5, 2, 9, 8, 6, 0, 8, 6, 3, 5, 3, 9, 4, 1, 4, 6, 2, 8, 9, 1, 1, 5, 9, 4, 9, 3, 2, 6 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

See A201397 for a guide to related sequences. The Mathematica program includes a graph.

LINKS

Table of n, a(n) for n=0..98.

EXAMPLE

least:  0.39327382732884150383245205720625342659...

greatest: 1.507928795380098266567899994070991413...

MATHEMATICA

a = 7; c = 0;

f[x_] := a*x^2 + c; g[x_] := Sec[x]

Plot[{f[x], g[x]}, {x, 0, Pi/2}, {AxesOrigin -> {0, 0}}]

r = x /. FindRoot[f[x] == g[x], {x, .3, .4}, WorkingPrecision -> 110]

RealDigits[r]    (* A201416 *)

r = x /. FindRoot[f[x] == g[x], {x, 1.5, 1.6}, WorkingPrecision -> 110]

RealDigits[r]    (* A201417 *)

CROSSREFS

Cf. A201397.

Sequence in context: A016674 A264918 A091670 * A072560 A290506 A303111

Adjacent sequences:  A201413 A201414 A201415 * A201417 A201418 A201419

KEYWORD

nonn,cons

AUTHOR

Clark Kimberling, Dec 01 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 22 09:50 EDT 2022. Contains 353949 sequences. (Running on oeis4.)